Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T17:11:28.309Z Has data issue: false hasContentIssue false

Identification and characterization of a cDNA clone-encoding antigen of Eimeria acervulina

Published online by Cambridge University Press:  21 August 2012

HUILI ZHU
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
LIXIN XU
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
RUOFENG YAN
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
XIAOKAI SONG
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
FANG TANG
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
SONG WANG
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
XIANGRUI LI*
Affiliation:
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
*
*Corresponding author: Tel: +86 25 84399000. Fax: +86 25 84399000. E-mail: [email protected]

Summary

Eimeria spp. are the causative agents of coccidiosis, a major disease affecting the poultry industry. So far, only a few antigen genes of E. acervulina have been reported. In this study, a clone, named as cSZ-JN2, was identified from a cDNA expression library prepared from E. acervulina sporozoite stage with the ability to stimulate the chicken immune response. The sequence analysis showed that the open reading fragment (ORF) of cSZ-JN2 was 153 bp in size and encoded a predicted protein of 50 amino acids of Mr 5·3 kDa. BLASTN search revealed that cSZ-JN2 had no significant homology with the known genes of E. acervulina or any other organism (GenBank). The recombinant cSZ-JN2 antigen expressed in E. coli was recognized strongly by serum from chickens experimentally infected with E. acervulina. Immunofluorescence analysis using antibody against recombinant cSZ-JN2 indicated that this protein was expressed in sporozoite and merozoite developmental stages. Animal challenge experiments demonstrated that the recombinant protein of cSZ-JN2 and DNA vaccine carrying cSZ-JN2 could significantly increase the average body weight gains, decrease the mean lesion scores and the oocyst outputs of the immunized chickens and presented anti-coccidial indices of more than 165. All the above results suggested that the cSZ-JN2 was a novel E. acervulina antigen and could be an effective candidate for the development of a new vaccine against E. acervulina infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almazán, C., Kocan, K. M., Bergman, D. K., Garcia-Garcia, J. C., Blouin, E. F. and de la Fuente, J. (2003). Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. Vaccine 21, 1492–501. doi: 10.1016/S0264-410X(02)00683-7.CrossRefGoogle ScholarPubMed
Barry, M. A., Lai, W. C. and Johnston, S. A. (1995). Protection against mycoplasma infection using expression-library immunization. Nature, London 377, 632635. doi: 10.1038/377632a0.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254. doi: 10.1016/0003-2697(76)90527-3.CrossRefGoogle ScholarPubMed
Cornelissen, J. B., Swinkels, W. J., Boersma, W. A. and Rebel, J. M. (2009). Host response to simultaneous infections with Eimeria acervulina, maxima and tenella: a cumulation of single responses. Veterinary Parasitology 162, 5866. doi: 10.1016/j.vetpar.2009.02.001.CrossRefGoogle ScholarPubMed
Ding, J., Bao, W., Liu, Q., Yu, Q., Abdille, M. H. and Wei, Z. (2008). Immunoprotection of chickens against Eimeria acervulina by recombinant α-tubulin protein. Parasitology Research 103, 11331140.CrossRefGoogle ScholarPubMed
Ding, X., Lillehoj, H. S., Dalloul, R. A., Min, W., Sato, T., Yasuda, A. and Lillehoj, E. P. (2005). In ovo vaccination with the Eimeria tenella EtMIC2 gene induces protective immunity against coccidiosis. Vaccine 23, 37333740. doi: 10.1016/j.vaccine.2005.01.144. doi: 10.1007/s00436-008-1106-1.CrossRefGoogle ScholarPubMed
Geriletu, Xu L., Xurihua and Li, X. (2011). Vaccination of chickens with DNA Vaccine expressing Eimeria tenella MZ5-7 against coccidiosis. Veterinary Parasitology 177, 612. doi: 10.1016/j.vetpar.2010.11.041.CrossRefGoogle ScholarPubMed
Gurunathan, S., Wu, C. Y., Freidag, B. L. and Seder, R. A. (2000). DNA vaccines: a key for inducing long-term cellular immunity. Current Opinion in Immunology 12, 442447. doi: 10.1016/S0952-7915(00)00118-7.CrossRefGoogle ScholarPubMed
Ivey, F. D., Magee, D. M., Woitaske, M. D., Johnston, S. A. and Cox, R. A. (2003). Identification of a protective antigen of Coccidioides immitis by expression library immunization. Vaccine 21, 43594367. doi: 10.1016/S0264-410x(03)00485-7.CrossRefGoogle ScholarPubMed
Jenkins, M. C. and Dame, J. B. (1987). Identification of immunodominant surface antigens of Eimeria acervulina sporozoites and merozoites. Molecular and Biochemical Parasitology 25, 155164. doi: 10.1016/0166-6851(87)90004-1.CrossRefGoogle ScholarPubMed
Johnson, J. and Reid, W. M. (1970). Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens. Experimental Parasitology 28, 3036. doi: 10.1016/0014-4894(70)90063-9.CrossRefGoogle ScholarPubMed
Klotz, C., Gehre, F., Lucius, R. and Pogonka, T. (2007). Identification of Eimeria tenella genes encoding for secretory proteins and evaluation of candidates by DNA immunisation studies in chickens. Vaccine 25, 66256634. doi: 10.1016/j.vaccine.2007.06.048.CrossRefGoogle ScholarPubMed
Lillehoj, H. S., Ding, X., Quiroz, M. A., Bevensee, E. and Lillehoj, E. P. (2005). Resistance to intestinal coccidiosis following DNA immunization with the cloned 3-1E Eimeria gene plus IL-2 IL-15, and IFN-γ. Avian Disease 49, 112117. doi: 10.1637/7249-073004R.CrossRefGoogle ScholarPubMed
Liljeqvist, S. and Stahl, S. (1999). Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. Journal of Biotechnology 73, 133. doi: 10.1016/S0168-1656(99)00107-8.CrossRefGoogle ScholarPubMed
Malek, T. R., Yu, A., Zhu, L., Matsutani, T., Adeegbe, D. and Bayer, A. L. (2008). IL-2 family of cytokines in T regulatory cell development and homeostasis. Journal of Clinical Immunology 28, 635639. doi: 10.1007/s10875-008-9235-y.CrossRefGoogle Scholar
Martin, A., Awadalla, S. and Lillehoj, H. S. (1995). Characterization of cell-mediated responses to Eimeria acervulina antigens. Avian Diseases 39, 538547. doi: 10.2307/1591807.CrossRefGoogle ScholarPubMed
Melby, P. C., Ogden, G. B., Flores, H. A., Zhao, W., Geldmacher, C., Biediger, N. M., Ahuja, S. K., Uranga, J. and Melendez, M. (2000). Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infection and Immunity 68, 55955602. doi: 10.1128/IAI.68.10.5595-5602.2000.CrossRefGoogle ScholarPubMed
Min, W., Lillehoj, H. S., Burnside, J., Weining, K. C., Staeheli, P. and Zhu, J. J. (2002). Adjuvant effects of IL-1β, IL-2, IL-8, IL-15, IFN-α, IFN-γ, TGF-β4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine 20, 267274. doi: 10.1016/S0264-410x(01)00270-5.CrossRefGoogle Scholar
Oshop, G. L., Elankumaran, S. and Heckert, R. A. (2002). DNA vaccination in the avian. Veterinary Immunology and Immunopathology 89, 112. doi: 10.1016/S0165-2427(02)00189-7.CrossRefGoogle ScholarPubMed
Shah, M. A., Yan, R., Xu, L., Song, X. and Li, X. (2010). A recombinant DNA vaccine encoding Eimeria acervulina cSZ-2 induces immunity against experimental E. tenella infection. Veterinary Parasitology 169, 185189. doi: 10.1016/j.vetpar.2009.12.035.CrossRefGoogle ScholarPubMed
Song, H., Song, X., Xu, L., Yan, R., Shah, M. A. and Li, X. (2010 b). Changes of cytokines and IgG antibody in chickens vaccinated with DNA vaccines encoding Eimeria acervulina lactate dehydrogenase. Veterinary Parasitology 173, 219227. doi: 10.1016/j.vetpar.2010.06.030.CrossRefGoogle ScholarPubMed
Song, H., Yan, R., Xu, L., Song, X., Shah, M. A., Zhu, H. and Li, X. (2010 a). Efficacy of DNA vaccines carrying Eimeria acervulina lactate dehydrogenase antigen gene against coccidiosis. Experimental Parasitology 126, 224231. doi: 10.1016/j.exppara.2010.05.015.CrossRefGoogle ScholarPubMed
Song, K. D., Lillehoj, H. S., Choi, K. D., Yun, C. H., Parcells, M. S., Huynh, J. T. and Han, J. Y. (2001). A DNA vaccine encoding a conserved Eimeria protein induces Protective immunity against live Eimeria acervulina challenge. Vaccine 19, 243252. doi: 10.1016/S0264-410x(00)00169-9.CrossRefGoogle Scholar
Stemke-Hale, K., Kaltenboeck, B., DeGraves, F. J., Sykes, K. F., Huang, J., Bu, C. H. and Johnston, S. A. (2005). Screening the whole genome of a pathogen in vivo for individual protective antigens. Vaccine 23, 30163025. doi: 10.1016/j.vaccine.2004.12.013.CrossRefGoogle ScholarPubMed
Tekiel, V., Alba-Soto, C. D., González Cappa, S. M., Postan, M. and Sánchez, D. O. (2009). Identification of novel vaccine candidates for Chagas'disease by immunization with sequential fractions of a trypomastigote cDNA expression library. Vaccine 27, 13231332. doi: 10.1016/j.vaccine.2008.12.056.CrossRefGoogle ScholarPubMed
Vermeulen, A. N. (1998). Progress in recombinant vaccine development against coccidiosis: a review and prospects into the next millennium. International Journal for Parasitology 28, 11211130. doi: 10.1016/S0020-7519(98)00080-0.CrossRefGoogle ScholarPubMed
Wallach, M. (2010). Role of antibody in immunity and control of chicken coccidiosis. Trends in Parasitology 26, 382387. doi:10.1016/j.pt.2010.04.004.CrossRefGoogle ScholarPubMed
Xu, S. Z., Chen, T. and Wang, M. (2006). Protective immunity enhanced by chimeric DNA prime-protein booster strategy against Eimeria tenella challenge. Avian Diseases 50, 579585. doi: 10.1637/7535-032706R1.1.CrossRefGoogle ScholarPubMed
Xu, Q., Song, X., Xu, L., Yan, R., Shah, M. A. and Li, X. (2008). Vaccination of chickens with a chimeric DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 induces protective immunity against coccidiosis. Veterinary Parasitology 156, 319323. doi: 10.1016/j.vetpar.2008.05.025.CrossRefGoogle ScholarPubMed
Yero, D., Pajón, R., Pérez, Y., Fariñas, M., Cobas, K., Diaz, D., Solis, R. L., Acosta, A., Brookes, C., Taylor, S. and Gorringe, A. (2007). Identification by genomic immunization of a pool of DNA vaccine candidates that confer protective immunity in mice against Neisseria meningitidis serogroup B. Vaccine 25, 51755188. doi: 10.1016/j.vaccine.2007.04.084.CrossRefGoogle ScholarPubMed
Zhou, W., Zhang, F. and Aune, T. M. (2003). Either IL-2 or IL-12 is sufficient to direct Th1 differentiation by nonobese diabetic T cells. The Journal of Immunology 170, 735740. PMID:12517935.CrossRefGoogle ScholarPubMed