Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:51:53.897Z Has data issue: false hasContentIssue false

Identification and biochemical characterization of two novel peroxiredoxins in a liver fluke, Clonorchis sinensis

Published online by Cambridge University Press:  22 July 2011

Y.-A. BAE
Affiliation:
Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon 440-746, Korea
S.-H. KIM
Affiliation:
Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon 440-746, Korea
E.-G. LEE
Affiliation:
Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon 440-746, Korea
W.-M. SOHN
Affiliation:
Department of Parasitology and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 660-751, Korea
Y. KONG*
Affiliation:
Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, and Center for Molecular Medicine, Samsung Biomedical Research Center, Suwon 440-746, Korea
*
*Corresponding author: Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea. Tel: +82 31 299 6251. Fax: +82 31 299 6269. E-mail: [email protected]

Summary

We identified 2 novel genes encoding different 2-Cys peroxiredoxins (PRxs), designated CsPRx2 and CsPRx3, in Clonorchis sinensis, which invades the human hepatobiliary tracts. The CsPRx2 gene expression was temporally increased along with the parasite's development and its protein product was detected in almost all parts of adult worms including subtegument, as well as excretory-secretory products. Conversely, CsPRx3 expression was temporally maintained at a basal level and largely restricted within interior parts of various tissues/organs. The recombinant forms of CsPRx proteins exhibited reducing activity against various hydroperoxides in the presence of either thioredoxin or glutathione (GSH) as a reducing equivalent, although they preferred H2O2 and GSH as a catalytic substrate and electron donor, respectively. A steady-state kinetic study demonstrated that the CsPRx proteins followed a saturable, Michaelis-Menten-type equation with the catalytic efficiencies (kcat/Km) ranging from 103 to 104 M−1 s−1, somewhat lower than those for other PRxs studied (104–105 M−1 s−1). The expression patterns and histological distributions specific to CsPRx2 and CsPRx3 might suggest different physiological functions of the antioxidant enzymes in protecting the worms against oxidative damage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahsan, M. K., Lekli, I., Ray, D., Yodoi, J. and Das, D. K. (2009). Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxidants – Redox Signaling 11, 27412758.CrossRefGoogle ScholarPubMed
Bouvard, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L. and Cogliano, V. WHO International Agency for Research on Cancer Monograph Working Group (2009). A review of human carcinogens – Part B: biological agents. Lancet Oncology 10, 321322.CrossRefGoogle ScholarPubMed
Cai, G. B., Bae, Y. A., Kim, S. H., Sohn, W. M., Lee, Y. S., Jiang, M. S., Kim, T. S. and Kong, Y. (2008). Vitellocyte-specific expression of phospholipid hydroperoxide glutathione peroxidases in Clonorchis sinensis. International Journal for Parasitology 38, 16131623.CrossRefGoogle ScholarPubMed
Callahan, H. L., Crouch, R. K. and James, E. R. (1988). Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitology Today 4, 218225.CrossRefGoogle ScholarPubMed
Chaithirayanon, K. and Sobhon, P. (2010). Molecular cloning and characterization of two genes encoding 2-Cys peroxiredoxins from Fasciola gigantica. Experimental Parasitology 125, 106113.CrossRefGoogle ScholarPubMed
Choi, B. I., Han, J. K., Hong, S. T. and Lee, K. H. (2004). Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clinical Microbiology Review 17, 540552.CrossRefGoogle ScholarPubMed
Henkle-Dührsen, K. and Kampkötter, A. (2001). Antioxidant enzyme families in parasitic nematodes. Molecular and Biochemical Parasitology 114, 129142.CrossRefGoogle ScholarPubMed
Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T. and Hakoshima, T. (1999). Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proceedings of the National Academy of Sciences, USA 96, 1233312338.CrossRefGoogle ScholarPubMed
Hong, S. J., Lee, J. Y., Lee, D. H., Sohn, W. M. and Cho, S. Y. (2001). Molecular cloning and characterization of a mu-class glutathione S-transferase from Clonorchis sinensis. Molecular and Biochemical Parasitology 115, 6975.CrossRefGoogle ScholarPubMed
Hong, S. J., Yu, J. R. and Kang, S. Y. (2002). Ultrastructural localization of 28 kDa glutathione S-transferase in adult Clonorchis sinensis. Korean Journal of Parasitology 40, 173176.CrossRefGoogle ScholarPubMed
Hong, S. T., Kho, W. G., Kim, W. H., Chai, J. Y. and Lee, S. H. (1993). Turnover of biliary epithelial cells in Clonorchis sinensis infected rats. Korean Journal of Parasitology 31, 8389.CrossRefGoogle ScholarPubMed
Ju, J. W., Joo, H. N., Lee, M. R., Cho, S. H., Cheun, H. I., Kim, J. Y., Lee, Y. H., Lee, K. J., Sohn, W. M., Kim, D. M., Kim, I. C., Park, B. C. and Kim, T. S. (2009). Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory-secretory products of Clonorchis sinensis adult worms. Proteomics 9, 30663078.CrossRefGoogle ScholarPubMed
Keiser, J. and Utzinger, J. (2009). Food-borne trematodiases. Clinical Microbiology Reviews 22, 466483.CrossRefGoogle ScholarPubMed
Kim, S. H., Cai, G. B., Bae, Y. A., Lee, E. G., Lee, Y. S. and Kong, Y. (2009). Two novel phospholipid hydroperoxide glutathione peroxidase genes of Paragonimus westermani induced by oxidative stress. Parasitology 136, 553565.CrossRefGoogle ScholarPubMed
Kumagai, T., Osada, Y. and Kanazawa, T. (2006). 2-Cys peroxiredoxins from Schistosoma japonicum: the expression profile and localization in the life cycle. Molecular and Biochemical Parasitology 149, 135143.CrossRefGoogle ScholarPubMed
Kuntz, A. N., Davioud-Charvet, E., Sayed, A. A., Califf, L. L., Dessolin, J., Arnér, E. S. and Williams, D. L. (2007). Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Medicine 4, e206.CrossRefGoogle Scholar
Li, A. H., Kong, Y., Cho, S. H., Lee, H. W., Na, B. K., Park, J. K. and Kim, T. S. (2005). Molecular cloning and characterization of the copper/zinc and manganese superoxide dismutase genes from the human parasite Clonorchis sinensis. Parasitology 130, 687697.CrossRefGoogle ScholarPubMed
Liu, F., Lu, J., Hu, W., Wang, S. Y., Cui, S. J., Chi, M., Yan, Q., Wang, X. R., Song, H. D., Xu, X. N., Wang, J. J., Zhang, X. L., Zhang, X., Wang, Z. Q., Xue, C. L., Brindley, P. J., McManus, D. P., Yang, P. Y., Feng, Z., Chen, Z. and Han, Z. G. (2006). New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathogen 2, e29.CrossRefGoogle ScholarPubMed
Lun, Z. R., Gasser, R. B., Lai, D. H., Li, A. X., Zhu, X. Q., Yu, X. B. and Fang, Y. Y. (2005). Clonorchiasis: a key foodborne zoonosis in China. Lancet Infectious Diseases 5, 3141.CrossRefGoogle ScholarPubMed
McGonigle, S., Dalton, J. P. and James, E. R. (1998). Peroxiredoxins: a new antioxidant family. Parasitology Today 14, 139145.CrossRefGoogle Scholar
Mei, H., Thakur, A., Schwartz, J. and LoVerde, P. T. (1996). Expression and characterization of glutathione peroxidase activity in the human blood fluke Schistosoma mansoni. Infection and Immunity 64, 42994306.CrossRefGoogle ScholarPubMed
Mieyal, J. J., Gallogly, M. M., Qanungo, S., Sabens, E. A. and Shelton, M. D. (2008). Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxidants & Redox Signaling 10, 19411988.CrossRefGoogle ScholarPubMed
Mkoji, G. M., Smith, J. M. and Prichard, R. K. (1988). Antioxidant systems in Schistosoma mansoni: correlation between susceptibility to oxidant killing and the levels of scavengers of hydrogen peroxide and oxygen free radicals. International Journal for Parasitology 18, 661666.CrossRefGoogle ScholarPubMed
Rhee, S. G., Kang, S. W., Jeong, W., Chang, T. S., Yang, K. S. and Woo, H. A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Current Opinion in Cell Biology 17, 183189.CrossRefGoogle ScholarPubMed
Roche, C., Liu, J. L., LePresle, T., Capron, A. and Pierce, R. J. (1996). Tissue localization and stage-specific expression of the phospholipid hydroperoxide glutathione peroxidase of Schistosoma mansoni. Molecular and Biochemical Parasitology 75, 187195.CrossRefGoogle ScholarPubMed
Salinas, G., Selkirk, M. E., Chalar, C., Maizels, R. M. and Fernández, C. (2004). Linked thioredoxin-glutathione systems in platyhelminths. Trends in Parasitology 20, 340346.CrossRefGoogle ScholarPubMed
Sayed, A. A. and Williams, D. L. (2004). Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. Journal of Biological Chemistry 279, 2615926166.CrossRefGoogle ScholarPubMed
Sekiya, M., Mulcahy, G., Irwin, J. A., Stack, C. M., Donnelly, S. M., Xu, W., Collins, P. and Dalton, J. P. (2006). Biochemical characterization of the recombinant peroxiredoxin (FhePrx) of the liver fluke, Fasciola hepatica. FEBS Letters 580, 50165022.CrossRefGoogle ScholarPubMed
Sies, H. (1993). Strategies of antioxidant defense. European Journal of Biochemistry 215, 213219.CrossRefGoogle ScholarPubMed
Smyth, J. D. and Halton, D. W. (1983). The Physiology of Trematodes. Cambridge University Press, Cambridge, UK.Google Scholar
Sripa, B., Kaewkes, S., Sithithaworn, P., Mairiang, E., Laha, T., Smout, M., Pairojkul, C., Bhudhisawasdi, V., Tesana, S., Thinkamrop, B., Bethony, J. M., Loukas, A. and Brindley, P. J. (2007). Liver fluke induces cholangiocarcinoma. PLoS Medicine 4, e201.CrossRefGoogle ScholarPubMed
Suttiprapa, S., Loukas, A., Laha, T., Wongkham, S., Kaewkes, S., Gaze, S., Brindley, P. J. and Sripa, B. (2008). Characterization of the antioxidant enzyme, thioredoxin peroxidase, from the carcinogenic human liver fluke, Opisthorchis viverrini. Molecular and Biochemical Parasitology 160, 116122.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Trachootham, D., Lu, W., Ogasawara, M. A., Nilsa, R. D. and Huang, P. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling 10, 13431374.CrossRefGoogle ScholarPubMed
Vennervald, B. J. and Polman, K. (2009). Helminths and malignancy. Parasite Immunology 31, 686696.CrossRefGoogle ScholarPubMed
Wood, Z. A., Poole, L. B. and Karplus, P. A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650653.CrossRefGoogle ScholarPubMed
Young, N. D., Campbell, B. E., Hall, R. S., Jex, A. R., Cantacessi, C., Laha, T., Sohn, W. M., Sripa, B., Loukas, A., Brindley, P. J. and Gasser, R. B. (2010). Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Neglected Tropical Diseases 4, e719.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bae Supplementary Figure 1 Legend

Bae Supplementary Figure 1 Legend

Download Bae Supplementary Figure 1 Legend(File)
File 26.6 KB
Supplementary material: File

Bae Supplementary Table

Supplementary Table 1. Pairwise matrix of divergence rates among trematode PRx proteins based on the JTT model

Download Bae Supplementary Table(File)
File 43.5 KB
Supplementary material: Image

Bae Supplementary Figure 1

Bae Supplementary Figure 1

Download Bae Supplementary Figure 1(Image)
Image 1.8 MB