Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T17:08:26.557Z Has data issue: false hasContentIssue false

Hymenolepis nana: the fine structure of the adult nervous system

Published online by Cambridge University Press:  06 April 2009

I. Fairweather
Affiliation:
Department of Zoology, The Queen's University, Belfast BT7 1NN
L. T. Threadgold
Affiliation:
Department of Zoology, The Queen's University, Belfast BT7 1NN

Summary

The fine structure of the nervous system in the scolex and neck region of Hymenolepis nana has been investigated by transmission electron microscopy. A description of the gross neuroanatomy in these regions of the worm is presented. The ganglia, commissures and nerve cords consist of an incomplete cortex of nerve cell bodies, and a core of nerve fibres. A delimiting sheath or capsule is absent. The nerve cell bodies contain a single nucleus with a single nucleolus, mitochondria, many ribosomes, Golgi complexes and vesicles formed within the Golgi cisternae. Numerous sub-surface cisternae are present beneath the outer plasma membrane of the nerve cell body, and the inner surfaces of these cisternae are studded with ribosomes. Some of the cisternae run tangentially into the cytoplasm of the perikaryon, particularly in the vicinity of the Golgi complexes; both sides of these cisternae are studded with ribosomes. From each neuronal perikaryon arise one or more neurites that contain neurotubules, mitochondria, ribosomes and electron-lucent or dense-cored vesicles. Five types of vesicle have been distinguished on the basis of their size and content. The neurites are unmyelinated and form synapses in the neuropile; the synapses possess features typical of those where mechanical strength is of importance. Three types of sensory receptors have been observed in H. nana, two ciliated and one non-ciliated; the latter typically form double or triple nerve endings which terminate within the tegument.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, K. (1975). Ultrastructural studies on Diphyllobothrium ditremum and D. dendriticum (Cestoda, Pseudophyllidea), with emphasis on the scolex tegument and the tegument in the area around the genital atrium. Zeitschrift für Parasitenkunde 46, 253–64.CrossRefGoogle Scholar
Blitz, N. M. & Smyth, J. D. (1973). Tegumental ultrastructure of Raillietina cesticillus during the larval–adult transformation, with emphasis on the rostellum. International Journal for Parasitology 3, 561–70.CrossRefGoogle ScholarPubMed
Bullock, T. H. (1965). Platyhelminthes. In Structure and Function in the Nervous Systems of Invertebrates, vol. 1 (ed. Bullock, T. H. and Horridge, G. A.), pp. 536577. San Francisco and London: W. H. Freeman.Google Scholar
Bullock, T. H. & Horridge, G. A. (1965). Structure and Function in the Nervous Systems of Invertebrates, vol. 1. San Francisco and London: W. H. Freeman.Google Scholar
Caley, J. (1975). A comparative study of the two alternative larval forms of Hymenolepis nana, the dwarf tapeworm, with special reference to the process of excystment. Zeitschrift für Parasitenkunde 47, 217–35.CrossRefGoogle Scholar
Chou, T.-C. T., Bennett, J. & Bueding, E. (1972). Occurrence and concentrations of biogenic amines in trematodes. Journal of Parasitology 58, 1098–102.CrossRefGoogle ScholarPubMed
Fairweather, I. (1978). Studies on the nervous system of Hymenolepis nana (Cestoda: Cyclophyllidea). Ph.D. thesis, University of London.Google Scholar
Fairweather, I. & Threadgold, L. T. (1981). Hymenolepis nana: the fine structure of the ‘penetration gland’ and nerve cells within the oncosphere. Parasitology 82, 445–58.CrossRefGoogle ScholarPubMed
Featherston, D. W. (1972). Taenia hydatigena: IV. Ultrastructure study of the tegument. Zeitschrift für Parasitenkunde 38, 214–32.CrossRefGoogle ScholarPubMed
Golubev, A. I. & Kashapova, L. A. (1975). Some features of the ultrastructure of the neurones of Pelichnobothrium speciosum (Monticelli, 1889) (Cestoda: Tetraphyllidea). Parazitologiya 9, 439–42.Google Scholar
Gustafsson, M. K. S. (1973). The histology of the neck region of plerocercoids of Triaenophorus nodulosus (Cestoda, Pseudophyllidea). Acta Zoologica Fennica 138, 116.Google Scholar
Gustafsson, M. K. S. (1976). Observations on the histogenesis of nervous tissue in Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Zeitschrift für Parasitenkunde 50, 313–21.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. & Wikgren, M. C. (1981). Peptidergic and aminergic neurons in adult Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea). Zeitschrift für Parasitenkunde 64, 121–34.CrossRefGoogle Scholar
Hariri, M. (1974). Occurrence and concentration of biogenic amines in Mesocestoides corti (Cestoda). Journal of Parasitology 60, 737–43.CrossRefGoogle ScholarPubMed
Hariri, M. (1975). Uptake of 5-hydroxytryptamine by Mesocestoides corti (Cestoda). Journal of Parasitology 61, 440–8.CrossRefGoogle Scholar
Hess, E. & Guggenheim, R. (1977). A study of the microtriches and sensory processes of the tetrathyridium of Mesocestoides corti Hoeppli, 1925, by transmission and scanning electron microscopy. Zeitschrift für Parasitenkunde 53, 189–99.CrossRefGoogle Scholar
Hökfelt, T. (1970). Electron microscopic studies on peripheral and central monoamine neurons. In Aspects of Neuroendocrinology. 5th International Symposium on Neurosecretion, 1969 (ed. Bargmann, W. and Scharrer, B.), pp. 7994. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Iversen, L. L. (1967). The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge University Press.Google Scholar
Johnstone, J. (1911). Tetrarhynchus erinaceus van Beneden. I. Structure of larva and adult worm. Parasitology 4, 364415.CrossRefGoogle Scholar
Lang, A. (1881). Untersuchungen zur vergleichenden Anatomie und Histologic des Nerven-systems der Plathelminthen. III. Das Nervensystem der Cestoden im allgemeinen und das jenige der Tetrahynchen im besondern. Mitteilungen aus der Zoologischen Station zu Neapel 2, 372400.Google Scholar
Lee, M. B., Bueding, E. & Schiller, E. L. (1978). The occurrence and distribution of 5-hydroxytryptamine in Hymenolepis diminuia and H. nana. Journal of Parasitology 64, 257–64.CrossRefGoogle ScholarPubMed
Lentz, T. L. (1967). Finestructure of nerve cells in a planaria. Journal of Morphology 121, 323–38.CrossRefGoogle Scholar
Morita, M. & Best, J. B. (1966). Electron microscopic studies on planaria. III. Some observations on the fine structure of planarian nervous tissue. Journal of Experimental Zoology 161, 391412.CrossRefGoogle Scholar
Morseth, D. J. (1967). Observations on the fine structure of the nervous system of Echinococcus granulosus. Journal of Parasitology 53, 492500.CrossRefGoogle ScholarPubMed
Niemiec, J. (1885). Recherches sur le système nerveux des Ténias. Recueil zoologique Suisse 2, 589648.Google Scholar
Oosaki, T. & Ishii, S. (1965). Observations on the ultrastructure of nerve cells in the brain of the planarian Dugesia gonocephala. Zeitschrift für Zellforschung und Mikroskopische Anatomie 66, 782–93.CrossRefGoogle ScholarPubMed
Rees, G. (1966). Nerve cells in Acanthobothrium coronatum (Rud.) (Cestoda: Tetraphyllidea). Parasitology 56, 4554.CrossRefGoogle ScholarPubMed
Rosenbluth, J. (1962). Subsurface cisterns and their relationship to the neuronal plasma membrane. Journal of Cell Biology 13, 405–21.CrossRefGoogle Scholar
Sakamoto, T. & Sugimura, M. (1969). Studies on echinococcosis. XXI. Electron microscopical observations on general structure of larval tissue of multilocularis Echinococcus. Japanese Journal of Veterinary Research 17, 6781.Google Scholar
Shield, J. M. (1971). Histochemical localization of monoamines in the nervous system of Dipylidium caninum (Cestoda) by the formaldehyde fluorescence technique. International Journal for Parasitology 1, 135–8.CrossRefGoogle ScholarPubMed
Specian, R. D. & Lumsden, R. D. (1980). The microanatomy and fine structure of the rostellum of Hymenolepis diminuta. Zeitschrift für Parasitenkunde 63, 7188.CrossRefGoogle ScholarPubMed
Tomosky-Sykes, T. K., Jardine, I., Mueller, J. F. & Bueding, E. (1977). Sources of error in neurotransmitter analysis. Analytical Biochemistry 83, 99108.CrossRefGoogle ScholarPubMed
Webb, R. A. (1976). Ultrastructure of synapses of the metacestode of Hymenolepis microstoma. Experientia 32, 99100.CrossRefGoogle Scholar
Webb, R. A. (1977). Evidence for neurosecretory cells in the cestode Hymenolepis microstoma. Canadian Journal of Zoology 55, 1726–33.CrossRefGoogle ScholarPubMed
Webb, R. A. & Davey, K. G. (1974). Ciliated sensory receptors of the unactivated metacestode of Hymenolepis microstoma. Tissue and Cell 6, 587–98.CrossRefGoogle ScholarPubMed
Webb, R. A. & Davey, K. G. (1975 a). The gross anatomy and histology of the nervous system of the metacestode of Hymenolepis microstoma. Canadian Journal of Zoology 53, 661–77.CrossRefGoogle ScholarPubMed
Webb, R. A. & Davey, K. G. (1975 b). Ultrastructural changes in an unciliated sensory receptor during activation of the metacestode of Hymenolepis microstoma. Tissue and Cell 7, 519–24.CrossRefGoogle Scholar
Webb, R. A. & Davey, K. G. (1976). The fine structure of the nervous tissue of the metacestode of Hymenolepis microstoma. Canadian Journal of Zoology 54, 1206–22.CrossRefGoogle ScholarPubMed
Wilson, V. C. L. C. & Schiller, E. L. (1969). The neuroanatomy of Hymenolepis diminuta and H. nana. Journal of Parasitology 55, 261–70.CrossRefGoogle ScholarPubMed