Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T13:45:30.712Z Has data issue: false hasContentIssue false

Host—parasite relationships of Blastocrithidia familiaris in Lygaeus pandurus Scop. (Hemiptera: Lygaeidae)

Published online by Cambridge University Press:  06 April 2009

K. L. Tieszen
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
D. H. Molyneux
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT
S. K. Abdel-Hafez
Affiliation:
Department of Biological Sciences, Yarmouk University, Irbid, Jordan

Summary

Blastocrithidia familiaris were found to be parasitic in the midgut, ileum and rectum of Lygaeus pandurus. The host—parasite relationship is described. Attachment of parasites in the midgut and ileum occurs by interdigitation of expanded flagella over and between the microvilli. No attachment to microvilli was observed where extracellular membranes form well-organized layers which lie parallel to the gut wall and completely separate the microvilli border from the lumen. The extracellular membranes originate from delamination of the outer unit membrane of microvilli which consists of a double plasma membrane. The function of the extracellular membrane layers and their possible role as a peritrophic membrane in preventing parasite attachment is discussed in relation to previous studies on midgut cells in Hemiptera with a similar apical coat on midgut microvilli. In the rectum, parasites attach to the cuticle of the gland cells and not to the rest of the rectal wall. Attachment to the cuticle occurs by the formation of hemidesmosomes. A comparison of the relationship of B. familiaris and its host to previous ultrastructural studies of associations between kinetoplastid flagellates and their respective hosts is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andries, J.-C., & Torpier, G. (1982). An extracellular brush border coat of lipid membranes in the midgut of Nepa cinerea (Insecta, Heteroptera): Ultrastructure and genesis. Biologie Cellulaire 46, 195202.Google Scholar
Baerwald, R. J. & Delcarpio, J. B. (1983). Double membrane-bounded intestinal microvilli in Oncopeltus fasciatus. Cell and Tissue Research 232, 593600.CrossRefGoogle ScholarPubMed
Billingsley, P. F. & Downe, A. E. R. (1983). Ultrastructural changes in posterior midgut cells associated with blood feeding in adult female. Rhodnius prolixus Stal. (Hemiptera: Reduviidae). Canadian Journal of Zoology 61, 2574–86.CrossRefGoogle Scholar
Böker, C. A. & Schaub, G. A. (1984). Scanning electron microscopic studies of Trypanosoma cruzi in the rectum of its vector Triatoma infestans. Zeitschrift für Parasitenkunde 70, 459–69.CrossRefGoogle ScholarPubMed
Brooker, B. E. (1971). Flagellar attachment and detachment of Crithidia fasciculata to the gut wall of Anopheles gambiae. Protoplasma 73, 191202.CrossRefGoogle Scholar
Burgos, M. H. & Gutiérrez, L. S. (1976). The intestine of Triatoma infestans. I. Cytology of the midgut. Journal of Ultrastructural Research 57, 19.CrossRefGoogle ScholarPubMed
Desser, S. S. (1976). The ultrastructure of the epimastigote stages of Trypanosoma rotatorium in the leech Batracobdella picta. Canadian Journal of Zoology 54, 1712–23.CrossRefGoogle Scholar
Gibbs, A. J. (1950). Crithidia familiaris n.sp. in Cenaeus carnifex Fabr. (Hemiptera). Parasitology 40, 322–7.CrossRefGoogle ScholarPubMed
Goodchild, A. J. P. (1963). Studies of the functional anatomy of the intestines of Heteroptera. Proceedings of the Zoological Society of London 141, 851910.CrossRefGoogle Scholar
Goodchild, A. J. P. (1966). Evolution of the alimentary canal in the Hemiptera. Biological Reviews 41, 97140.CrossRefGoogle Scholar
Gutiérrez, L. S. & Burgos, M. H. (1978). The intestine of Triatoma infestans. II. The surface coat of the midgut. Journal of Ultrastructural Research 63, 244–51.CrossRefGoogle Scholar
Killick-Kendrick, R., Molyneux, D. H. & Ashford, R. W. (1974). Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sandfly. Proceedings of the Royal Society of London, B 187, 409–19.Google Scholar
Laird, M. (1959). Blastocrithidia n.g. (Mastigophora: Protomonadina) for Crithidia (in part) with a subarctic record for B. gerridis (Patton). Canadian Journal of Zoology 37, 749–52.CrossRefGoogle Scholar
Lane, N. J. & Harrison, J. B. (1979). An unusual cell surface modification: A double plasma membrane. Journal of Cell Science 39, 355–72.CrossRefGoogle ScholarPubMed
Laugé, G. & Nishioka, R. S. (1977). Ultrastructural study of the relations between Leptomonas oncepelti (Noguchi and Tilden), Protozoa Trypanosomatidae, and the rectal wall of adults of Oncopeltus fasciatus Dallas, Hemiptera Lygaeidae. Journal of Morphology 154, 291305.CrossRefGoogle ScholarPubMed
Lewis, J. W. & Ball, S. J. (1979). Attachment of the epimastigotes of Trypanosoma cobitis (Mitrophanow, 1883) to the crop wall of the leech vector Hemiclepsis marginata. Zeitschrift für Parasitenkunde 60, 2936.CrossRefGoogle Scholar
McGhee, R. B. & Hanson, W. L. (1964). Comparison of the life cycle of Leptomonas oncopelti and Phytomonas elmassiani. Journal of Protozoology 11, 555–62.CrossRefGoogle ScholarPubMed
McGhee, R. B. & Postell, F. J. (1982). Transmission of the trypanosomatid flagellate Phytomonas davidi, a symbiont of the Euphorbiaceae, by the hemipteran bug Pachybrachius bilobata scutellatus. Journal of Protozoology 29, 445–8.CrossRefGoogle Scholar
Marshall, A. T. & Cheung, W. W. K. (1970). Ultrastructure and cytochemistry of an extensive plexiform surface coat on the midgut cells of a fulgorid insect. Journal of Ultrastructural Research 33, 161–72.CrossRefGoogle ScholarPubMed
Mehlhorn, H., Schaub, G. A., Peters, W. & Haberkorn, A. (1979). Electron microscopic studies on Blastocrithidia triatomae Cerisola et al. 1971 (Trypanosomatidae). Tropenmedizin und Parasitologie 30, 289300.Google ScholarPubMed
Molyneux, D. H. (1975). Trypanosoma (Megatrypanum) melophagium: modes of attachment of parasites to midgut, hindgut and rectum of the sheep ked Melophagus ovinus. Acta tropica 32, 6574.Google Scholar
Molyneux, D. H. (1977). Vector-parasite relationships in the Trypanosomatidae. Advances in Parasitology 15, 182.CrossRefGoogle Scholar
Molyneux, D. H. (1983). Host—parasite relationships of Trypanosomatidae in vectors. In Current Topics in Vector Research, vol. 1, (ed. Harris, K. F.), PP. 117–48. New York: Praegar Publications.Google Scholar
Molyneux, D. H., Croft, S. L. & Lavin, D. R. (1981). Studies on the host—parasite relationships of Leptomonas species (Protozoa: Kinetoplastida) of Siphonaptera. Journal of Natural History 15, 395406.CrossRefGoogle Scholar
Oschman, J. L. & Wall, B. J. (1969). The structure of the rectal pads of Periplaneta americana L. with regard to fluid transport. Journal of Morphology 127, 475509.CrossRefGoogle Scholar
Rastogi, S. C. (1960). The anatomy of the digestive system of Lygaeus pandurus Scop. (Heteroptera: Lygaeidae). Proceedings of the Rajasthan Academy of Sciences 7, 2937.Google Scholar
Reger, J. F. (1971). Fine structure of the surface coat of midgut epithelial cells in the homopteran, Phylloscelis atra (Fulgorid). Journal of Submicroscopic Cytology 3, 353–8.Google Scholar
Rowton, E. D., Lushbaugh, W. B. & McGhee, R. B. (1981). Ultrastructure of the flagellar apparatus and the attachment of Herpetomonas ampelophilae in the gut and malpighian tubules of Drosophila melanogaster. Journal of Protozoology 28, 297301.CrossRefGoogle Scholar
Schaub, G. A. (1978). The influence of Trypanosomatidae on the development of Triatoma infestans. Fourth International Congress of Parasitology, Warszawa. Short Communication, Section A, pp. 38–9.Google Scholar
Steiger, R. (1973). On the ultrastructure of Trypanosoma (Trypanozoon) brucei in the course of its life cycle and some related aspects. Acta tropica 30, 164–8.Google ScholarPubMed
Tetley, L. & Vickerman, K. (1985). Differentiation in Trypanosome brucei: Host—parasite cell junctions and their persistence during acquisition of the variable antigen coat. Journal of Cell Science 74, 119.CrossRefGoogle ScholarPubMed
Tieszen, K., Heywood, P. & Molyneux, D. H. (1983). Ultrastructure and host-parasite association of Blastocrithidia gerridis in the ventriculus of Gerris odontogaster (Hemiptera: Gerridae). Canadian Journal of Zoology 61, 1900–9.CrossRefGoogle Scholar
Tieszen, K., Molyneux, D. H. & Abdel-Hafez, S. K. (1985). Ultrastructure of cyst formation in Blastocrithidia familiaris in Lygaeus pandurns (Hemiptera: Lygaeidae). Zeitschrift für Parasitenkunde 71, 179–88.CrossRefGoogle Scholar
Vickerman, K. (1962). Observations on the life cycle of Phytomonas elmassiani (Migone) in East Africa. Journal of Protozoology 9, 2633.CrossRefGoogle Scholar
Vickerman, K. (1963). The fine structure of Blastocrithidia familiaris (Gibbs) in comparison with other trypanosomatid flagellates. Progress in Protozoology, 1st International Congress on Protozoology, Prague, pp. 398401.Google Scholar
Wall, B. J. & Oschman, J. L. (1970). Water and solute uptake by rectal pads of Periplaneta americana. American Journal of Physiology 218, 1208–15.CrossRefGoogle ScholarPubMed
Wallace, F. G. (1966). The trypanosomatid parasites of insects and arachnids. Experimental Parasitology 18, 124–93.CrossRefGoogle ScholarPubMed
Wallace, F. G. (1979). Biology of the Kinetoplastida of arthropods. In Biology of the Kinetoplastida, vol. 2, (ed. Lumsden, W. H. R. and Evans, D. A.), pp. 213240. London, New York and San Francisco: Academic Press.Google Scholar
Zeledón, R., Alvarenga, N. J. & Schosinsky, K. (1977). Ecology of Trypanosoma cruzi in the insect vector. In Pan American Health Organization Scientific Publication No. 347. Proceedings of an International Symposium, 27 June, pp. 5970.Google Scholar
Zeledón, R., Bolaños, R. & Rojas, M. (1984). Scanning electron microscopy of the final phase of the life cycle of Trypanosoma cruzi in the insect vector. Acta tropica 41, 3943.Google ScholarPubMed