Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:08:34.489Z Has data issue: false hasContentIssue false

Host genetics and infectious disease

Published online by Cambridge University Press:  06 April 2009

D. J. Weatherall
Affiliation:
Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK

Summary

Recent work on the inheritance of susceptibility to malaria suggests that, over what may have been a relatively short evolutionary period, a remarkably diverse series of gene families have been modified in response to the selective drive of this single infection. The phenotype consequences are not confined to the red cell, but involve the immune system, cytokines and many other systems. It seems likely that the mechanisms of variation in genetic susceptibility to other infective agents will reflect at least a similar degree of complexity and, if the selective pressures have been present for longer periods of our evolutionary history, may be even more diverse. This may have important implications for work directed at trying to define susceptibility loci for current infectious and non-infectious diseases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, S. T., Lucassen, A. M., Gough, S. C. L., Powell, E. E., Undlien, D. E., Pritchard, L. E., Merriman, M. E., Kawaguchi, Y., Dronsfield, M., Piciot, F., Nerup, J., Bouzekri, N., Cambon-Thomsen, A., Ronningen, K. S., Barnett, A. H., Bain, S. C. & Todd, J. A. (1995). Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genetics 9, 284–92.CrossRefGoogle ScholarPubMed
Davies, J. L., Kawaguchi, Y., Bennett, S. T., Copeman, J. B., Cordell, H. J., Pritchard, L. E., Reed, P. W., Gough, S. C. L., Jenkins, S. C., Palmer, S. M., Balfour, K. W., Rowe, B., Farrall, M., Barnett, A. H., Bain, S. C. & Todd, A. J. (1994). A genome-wide search for human type 1 diabetes susceptibility gene. Nature 371, 130–6.CrossRefGoogle Scholar
Flint, J., Harding, R. M., Boyce, A. J. & Clegg, J. B. (1993). The population genetics of the haemoglobinopathies. Clinics in Haematology 6, 215–62.Google ScholarPubMed
Friedman, M. J., Roth, E. F., Nagel, R. L. & Traeger, W. (1979). Plasmodium falciparum; physiological interactions with the human sickle cell. Experimental Parasitology 47, 7380.CrossRefGoogle ScholarPubMed
Garrod, A. E. (1931). The Inborn Factors in Disease. An Essay. Oxford: Oxford University Press.Google Scholar
Haldane, J. B. S. (1948). The rate of mutation of human genes. Proceedings of the Eighth International Congress of Genetics and Heredity. Hereditas 35, (Suppl.) 267–73.CrossRefGoogle Scholar
Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Twumasi, P., Rowe, P. A., Bennett, S., Brewster, D., Mcmichael, A. J. & Greenwood, B. M. (1991). Common west African HLA antigens are associated with protection from severe malaria. Nature 352, 595600.CrossRefGoogle ScholarPubMed
Hill, A. V. S., Elvin, J., Willis, A., Aidoo, M., Allsopp, C. E. M., Gotch, F. M., Gao, X. M., Takiguchi, M., Greenwood, B. M., Townsend, A. R. M., McMichael, A. J. & Whittle, H. c. (1992). Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–9.CrossRefGoogle ScholarPubMed
Jarolim, P., Palek, J., Amato, D., Hassan, K., Sapak, P., Nurse, G. T., Rubin, H. L., Zhai, S., Sahr, K. E. & Liu, S. c. (1991). Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proceedings of the National Academy of Sciences USA 88, 11022–6.CrossRefGoogle ScholarPubMed
Kwiatkowski, D., Hill, A. V. S., Sambou, I., Twumasi, P., Castracane, J., Manogue, K. R., Cerami, A., Brewster, D. R. & Greenwood, B. M. (1990). TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336, 1201–4.CrossRefGoogle ScholarPubMed
Kwiatkowski, D. (1995). Malarial toxins and the regulation of parasite density. Parasitology Today 11, 206–12.CrossRefGoogle ScholarPubMed
Luzzatto, L., Nwachuku, P. S. & Reddy, S. (1970) Increased sickling of parasitised erythrocytes is the mechanisms of resistance against malaria in the sickle cell trait. Lancet i, 319–21.CrossRefGoogle Scholar
Luzzi, G. A., Merry, A. H., Newbold, C. I., Marsh, K., Pasvol, G. & Weatherall, D. J. (1991). Surface antigen expression on Plasmodium falciparum-infected erythrocytes is modified in α and β thalassaemia. Journal of Experimental Medicine 173, 785.CrossRefGoogle Scholar
McGuire, w., Hill, A. V. S., Allsopp, C. E. M., Greenwood, B. M. & Kwiatkowski, D. (1994). Variation in the TNH-α promoter region associated with susceptibility to cerebral malaria. Nature 371, 508–11.CrossRefGoogle ScholarPubMed
Miller, L. H. (1994). Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proceedings of the National Academy of Sciences USA 91, 2415–19.CrossRefGoogle ScholarPubMed
Mourant, A. E., Kopec, A. C. & Domaniewska-Sobezak, K. (1978). Blood Groups and Disease. Oxford: Oxford University Press.Google Scholar
Murphy, P. M. (1993). Molecular mimicry and the generation of host defense protein diversity. Cell 72, 823–6.CrossRefGoogle ScholarPubMed
Neel, J. v. (1962). A ‘thrifty’ genotype rendered detrimental by progress ? American Journal of Human Genetics 14, 353–61.Google ScholarPubMed
O'Brien, S. J. (1991). Ghetto legacy. Molecular Evolution 1, 209–11.Google ScholarPubMed
Pasvol, G. & Weatherall, D. J. (1978). A mechanism foi the protective effect of haemoglobin S against P. falciparum malaria. Nature 274, 701–3.CrossRefGoogle Scholar
Pasvol, G. & Wilson, R. J. M. (1982). The interaction of malarial parasites with red blood cells. British Medico Bulletin 38, 133–40.CrossRefGoogle Scholar
Ruwende, C., Khoo, S. C., Snow, R. W., Yates, S. N. R., Kwiatkowski, D., Gupta, S., Warn, P.., Allsopp, C. E. M., Gilbert, S. C., Peschu, N., Newbold, C. I., Greenwood, B. M., Marsh, K. & Hill, A. V. S. (1995). Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246–9.CrossRefGoogle ScholarPubMed
Thursz, M., Kwiatkowski, D., Allsopp, C. E. M., Greenwood, B. M., Thomas, H. C. & Hill, A. V. S. (1995). Association between an MHC class II allele and clearance of hepatitis virus in the Gambia. New England Journal of Medicine 332, 1065–9.CrossRefGoogle ScholarPubMed
Vaxillaire, M., Boccio, V., Philippi, A., Vigouroux, C., Terwilliger, J., Passa, P., Beckman, J. S., Velho, G., Lathrop, G. M. & Frougel, P. (1995). A gene for early-onset non-insulin dependent diabetes mellitus (Maturity Onset Diabetes of the Young) maps to chromosome 12q. Nature Genetics 9, 418–23.CrossRefGoogle Scholar
Weatherall, D. J., Bell, J. I., Clegg, J. B., Flint, J., Higgs, D. R., Hill, A. V. S., Pasvol, G. & Thein, S. L. (1988). Genetic factors as determinants of infectious disease transmission in human communities. Philosophical Transactions of the Royal Society of London B 321, 327–48.Google ScholarPubMed
Weatherall, D. J. & Clegg, J. B. (1981). The Thalassaemia Syndromes (3rd ed.). Oxford: Blackwell Scientific Publications.Google Scholar
Weiss, K. M., Ferrell, R. E. & Harris, C. L. (1984). A New World syndrome of metabolic diseases with a genetic and evolutionary basis. Yearbook of Physical Anthropology 27, 153–78.CrossRefGoogle Scholar
Yates, S. N. R., Snow, R. W., Allsopp, C. E. M., Newton, C. R. J. C., Kwiatkowski, D., Palmer, D., Peschu, N., Greenwood, B. M., Marsh, K., Newbold, C. I. & Hill, A. V. S. (1995). Resistance of homozygotes but not heterozygotes for α+ thalassaemia to severe malaria: implications for the time depth of malarial selection. Proceedings of the British Society of Parasitology 5th Malaria Meeting. 1314.Google Scholar
Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L. & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–32.CrossRefGoogle ScholarPubMed
Zimmet, P., Dowse, G., Finch, C., Serjeantson, S. & King, H. (1990). The epidemiology and natural history of NIDDM; lessons from the South Pacific. Diabetes and Metabolic Reviews 6, 91124.CrossRefGoogle ScholarPubMed