Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T10:07:30.124Z Has data issue: false hasContentIssue false

Histochemical observations on the distribution of various oxidative and phosphorylative enzymes in larval digeneans parasitizing Bithynia tentaculata (Mollusca: Gastropoda)

Published online by Cambridge University Press:  06 April 2009

Trevor A. J. Reader
Affiliation:
Department of Biological Sciences, Portsmouth Polytechnic, King Henry I Street, Portsmouth, PO1 2DY

Extract

A comparative histochemical study is made on the distribution of succinate dehydrogenases, isocitrate dehydrogenases, malate dehydrogenases, glucose-6-phosphate dehydrogenases, α-glycerophosphate dehydrogenases, alcohol dehydrogenases, lactate dehydrogenases and glycogen phosphorylases in the tissues of sporocysts, rediae, cercariae and metacercariae parasitizing the gastropod mollusc Bithynia tentaculata. The results suggest that metabolic sequences resembling the conventional Embden–Meyerhoff pathway, the Pentose-Phosphate cycle and Krebs’ citric acid cycle may be operational in these larval digeneans. Heaviest enzyme activity is evident in the redial pharynx, the cercarial and metacercarial sucker and in the cercarial tail. Presumably the enzymes giving this heavy reaction form part of the energy producing mechanism for these active organs. Encysted metacercariae show a very heavy enzyme activity when compared with the sporocysts and developing cercariae of the same species. This is presumably associated with the breakdown of food storage materials, particularly glycogen, by these encysted stages.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barry, D. H., Mawdesley-Thomas, L. E. & Malone, J. C. (1968). Enzyme histochemistry of the adult liver fluke, Fasciola hepatica. Experimental Parasitology 23, 355–60.Google Scholar
Bo, W. & Smith, M. (1965). A histochemical and biochemical study of phosphorylase and glycogen synthetase in smooth muscle. Anatomical Record 153, 295302.Google Scholar
Bogitsh, B. J. (1967). Histochemical localization of some enzymes in cysticercoids of two species of Hymenolepis. Experimental Parasitology 21, 373–9.Google Scholar
Brand, T. von (1966). Biochemistry of Parasites. New York, London: Academic Press.Google Scholar
Bryant, C. & Williams, J. P. G. (1962). Some aspects of the metabolism of the liver fluke, Fasciola hepatica L. Experimental Parasitology 12, 372–6.Google Scholar
Conde-Del Pino, E., Annexy-Martinez, A. M., Pérez-Villar, M. & Citron-Rivera, A. A. (1968). Studies in Schistosoma mansoni. II. Isoenzyme patterns for alkaline phosphatase, isocitric dehydrogenase, glutamic oxalacetic transaminase, and glucose- 6-phosphate dehydrogenase of adult worms and cercariae. Experimental Parasitology 22, 288–94.Google Scholar
Conde-Del Pino, E., Pérez-Villar, M., Citron-Rivera, A. A. & Sineriz, R. (1966). Studies in Schistosoma mansoni. I. Malic and lactic dehydrogenases of adult worms and cercariae. Experimental Parasitology 18, 320–6.Google Scholar
Crompton, D. W. T. (1965). A histochemical study of the distribution of glycogen and oxido-reductase activity in Polymorphus minutus (Goeze, 1782) (Acanthocephala). Parasitology 55, 503–14.CrossRefGoogle Scholar
Dollfus, P. R. (1956). ‘Distoma arenula' F. C. H. Creplin 1825, distome peu connu, trouvé chez la poule d'eau, Gallinula chloropus (L.) A. Richelieu. Annales de parasitologie humaine et comparée 31, 182–9.CrossRefGoogle Scholar
Eble, A. E. (1969). A histochemical demonstration of glycogen, glycogen phosphorylase and branching enzyme in the American oyster. Proceedings of the National Shellfisheries Association 59, 2734.Google Scholar
Eranko, O. & Palkama, A. (1961). Improved localisation of phosphorylase by the use of polyvinyl pyrrolidone and high substrate concentration. Journal of Histochemistry and Cytochemistry 9, 585.Google Scholar
Huang, T. Y., T'ao, Y. H. & Chu, C. H. (1962). Studies on transaminases of Schistosoma japonicum. Chinese Medical Journal 81, 7985.Google ScholarPubMed
Humiczewska, M. (1968). Some oxidative enzymes in Fasciola hepatica L. and Dendrocoelum lacteum Müll. II. Body wall. Folia Histochemica Cytochemica.Google Scholar
Lühe, M. (1909). Parasitische Plattwurmer. I. Trematoden. Susswasser fauna Deutschlands 17, 1217.Google Scholar
Mansour, T. E. (1959). Studies on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Biochemica et Biophysica Acta 34, 456–64.Google Scholar
Pearse, A. G. E. (1961). Histochemistry Theoretical and Applied. 2nd ed.London: J. A. Churchill Ltd.Google Scholar
Porter, C. W. & Hall, J. E. (1970). Histochemistry of a cotylocercous cercaria. II. Hydrolytic and oxidative enzymes in Plagiorchis lepomis. Experimental Parasitology 27, 378–87.CrossRefGoogle Scholar
Prichard, R. K. & Schofield, P. J. (1968). The glycolytic pathway in adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 697710.Google Scholar
Reader, T. A. J. (1971). Histochemical observations on carbohydrates, lipids and enzymes in digenean parasites and host tissues of Bithynia tentaculata (Mollusca: Gastropoda). Parasitology 63, 125–36.CrossRefGoogle Scholar
Reader, T. A. J. (1972 a). Some aspects of the host–parasite relationship between Bithynia tentaculata (Mollusca: Gastropoda) and its larval digeneans. Ph.D. Thesis, Council for National Academic Awards.Google Scholar
Reader, T. A. J. (1972 b). Ultrastructural and cytochemical observations on the body wall of the redia of Sphaeridiotrema globulus (Rudolphi, 1819). Parasitology 65, 537–46.Google Scholar
Rogers, S. H. (1969). Some aspects of carbohydrate metabolism in Schistosomatium douthitti. Dissertation abstracts 29, 3550.Google Scholar
Rudolphi, C. A. (1814). Erster Nactrag zu meiner Naturgeschichte der Eingeweidewurmer. Gesellschaft Naturforschender Freunde zu Berlin 6, 83113.Google Scholar
Sewell, R. B. (1922). Cercaria Indicae. Indian Journal of Medical Research 10, 1370.Google Scholar
Smyth, J. D. (1966). The Physiology of Trematodes. University Reviews in Biology. London: Oliver and Boyd.Google Scholar
Szidat, L. (1937). Über die Entwicklungsgeschichte von Sphaeridiotrema globulus Rud. 1819, und die Stelling der Psilostomidae Odhner im naturlichen System. I. Die Entwicklungsgeschichte von Sphaeridiotrema globulus Rud. Zeitschrift für Parasitenkunde 9, 529–42.CrossRefGoogle Scholar
Thorpe, E. (1968). Comparative enzyme histochemistry of immature and mature stages of Fasciola hepatica. Experimental Parasitology 22, 150–9.Google Scholar
Timms, A. R. (1960). Schistosome enzymes. In Host Influence on Parasite Physiology. New York: Rutgers University Press.Google Scholar
Vernberg, W. B. & Hunter, W. S. (1960). Studies on oxygen consumption in digenetic trematodes. IV. Oxidative pathways in the trematode Gynaecotyla adunca (Linton, 1905). Experimental Parasitology 9, 42–6.Google Scholar
Vernberg, W. B. & Hunter, W. S. (1963). Utilisation of certain substrates by larval and adult stages of Himasthla quissetensis. Experimental Parasitology 14, 311–5.CrossRefGoogle ScholarPubMed