Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T05:05:59.211Z Has data issue: false hasContentIssue false

High-throughput screening in suboptimal growth conditions identifies agonists of Giardia lamblia proliferation

Published online by Cambridge University Press:  10 August 2010

Z. FAGHIRI
Affiliation:
Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, Massachusetts, USA
R. BONILLA SANTIAGO
Affiliation:
Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, Massachusetts, USA
Z. WU
Affiliation:
Brown University, Center for Statistical Sciences, Providence, Rhode Island, USA
G. WIDMER*
Affiliation:
Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, Massachusetts, USA
*
*Corresponding author: Tufts Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA. Tel: +508 839 7944. Fax: +508 839 7911. E-mail: [email protected]

Summary

Giardia lamblia is one of the most prevalent parasites of mankind and is estimated to cause over 200 million infections per year. To screen chemical libraries for compounds that perturb trophozoite proliferation we adapted a conventional culture method to 384-well plates and identified numerous inhibitors. Here we used a modified assay to screen for compounds that promote trophozoite multiplication. Trophozoite growth was reduced by dilution of the culture medium and the growth period was extended to screen 2 compound libraries comprising 1500 compounds. A total of 4 agonists of trophozoite multiplication were identified. In the presence of one of these compounds, strychnine, enhanced growth was accompanied by unusual trophozoite morphology characterized by dividing trophozoites displaying more than the 2 nuclei per cell which are normally observed. The other agonists, although belonging to 2 distinct chemical groups, are known to affect isoprenylation, indicating a link between protein or lipid isoprenylation and growth in culture. Although inhibitors of isoprenylation are known to antagonize proliferation of mammalian cells, an agonistic effect of isoprenylation modulators has to our knowledge not been described previously. These observations illustrate the power of chemical genetics for identifying pathways controlling specific traits in G. lamblia.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ariyoshi, T., Arakaki, M., Ideguchi, K., Ishizuka, Y. and Noda, K. (1975). Studies on the metabolism of d-Limonene (p-Mentha-1,8-diene). III. Effects of d-Limonene on the lipids and drug-metabolizing enzymes in rat livers. Xenobiotica 5, 3338.CrossRefGoogle Scholar
Austin, C. A., Shephard, E. A., Pike, S. F., Rabin, B. R. and Phillips, I. R. (1988). The effect of terpenoid compounds on cytochrome P-450 levels in rat liver. Biochemical Pharmacology 37, 22232229.CrossRefGoogle ScholarPubMed
Bernander, R., Palm, J. E. D. and Svard, S. G. (2001). Genome ploidy in different stages of the Giardia lamblia life cycle. Cellular Microbiology 3, 5562.CrossRefGoogle ScholarPubMed
Bonilla Santiago, R., Wu, Z., Zhang, L. and Widmer, G. (2008). Identification of growth inhibiting compounds in a Giardia lamblia high-throughput screen. Molecular and Biochemical Parasitology 162, 149154.CrossRefGoogle Scholar
Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., Golland, P. and Sabatini, D. M. (2006). CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100.CrossRefGoogle ScholarPubMed
Crowell, P. L. (1999). Prevention and therapy of cancer by dietary monoterpenes. Journal of Nutrition 129, 775S778S.CrossRefGoogle ScholarPubMed
Davids, B. J., Williams, S., Lauwaet, T., Palanca, T. and Gillin, F. D. (2008). Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite. International Journal for Parasitology 38, 353369.CrossRefGoogle Scholar
Dawson, S. C., Sagolla, M. S., Mancuso, J. J., Woessner, D. J., House, S. A., Fritz-Laylin, L. and Cande, W. Z. (2007). Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryotic Cell 6, 23542364.CrossRefGoogle ScholarPubMed
Elmendorf, H. G., Dawson, S. C. and Mccaffery, J. M. (2003). The cytoskeleton of Giardia lamblia. International Journal for Parasitology 33, 328.CrossRefGoogle ScholarPubMed
Franzen, O., Jerlstrom-Hultqvist, J., Castro, E., Sherwood, E., Ankarklev, J., Reiner, D. S., Palm, D., Andersson, J. O., Andersson, B. and Svard, S. G. (2009). Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathogens 5, e1000560.CrossRefGoogle Scholar
Gelb, M. H., Tamanoi, F., Yokoyama, K., Ghomashchi, F., Esson, K. and Gould, M. N. (1995). The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Letters 91, 169175.CrossRefGoogle ScholarPubMed
Ghosh, S., Frisardi, M., Rogers, R. and Samuelson, J. (2001). How Giardia swim and divide. Infection and Immunity 69, 78667872.CrossRefGoogle ScholarPubMed
Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 487488.CrossRefGoogle ScholarPubMed
Lujan, H. D., Mowatt, M. R., Chen, G. Z. and Nash, T. E. (1995). Isoprenylation of proteins in the protozoan Giardia lamblia. Molecular and Biochemical Parasitology 72, 121127.CrossRefGoogle ScholarPubMed
Malo, N., Hanley, J. A., Cerquozzi, S., Pelletier, J. and Nadon, R. (2006). Statistical practice in high-throughput screening data analysis. Nature Biotechnology 24, 167175.CrossRefGoogle ScholarPubMed
Mills, J. J., Chari, R. S., Boyer, I. J., Gould, M. N. and Jirtle, R. L. (1995). Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Research 55, 979983.Google ScholarPubMed
Morgan, U. M., Reynoldson, J. A. and Thompson, R. C. (1993). Activities of several benzimidazoles and tubulin inhibitors against Giardia spp. in vitro. Antimicrobial Agents and Chemotherapy 37, 328331.CrossRefGoogle ScholarPubMed
Morrison, H. G., Mcarthur, A. G., Gillin, F. D., Aley, S. B., Adam, R. D., Olsen, G. J., Best, A. A., Cande, W. Z., Chen, F., Cipriano, M. J., Davids, B. J., Dawson, S. C., Elmendorf, H. G., Hehl, A. B., Holder, M. E., Huse, S. M., Kim, U. U., Lasek-Nesselquist, E., Manning, G., Nigam, A., Nixon, J. E., Palm, D., Passamaneck, N. E., Prabhu, A., Reich, C. I., Reiner, D. S., Samuelson, J., Svard, S. G. and Sogin, M. L. (2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317, 19211926.CrossRefGoogle ScholarPubMed
Nohynkova, E., Draber, P., Reischig, J. and Kulda, J. (2000). Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. European Journal of Cell Biology 79, 438445.CrossRefGoogle ScholarPubMed
Poxleitner, M. K., Dawson, S. C. and Cande, W. Z. (2008). Cell cycle synchrony in Giardia intestinalis cultures achieved by using nocodazole and aphidicolin. Eukaryotic Cell 7, 569574.CrossRefGoogle ScholarPubMed
Sagolla, M. S., Dawson, S. C., Mancuso, J. J. and Cande, W. Z. (2006). Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. Journal of Cell Science 119, 48894900.CrossRefGoogle ScholarPubMed
Smith, P. D., Gillin, F. D., Spira, W. M. and Nash, T. E. (1982). Chronic giardiasis: studies on drug sensitivity, toxin production, and host immune response. Gastroenterology 83, 797803.CrossRefGoogle ScholarPubMed
Tamanoi, F., Gau, C. L., Jiang, C., Edamatsu, H. and Kato-Stankiewicz, J. (2001). Protein farnesylation in mammalian cells: effects of farnesyltransferase inhibitors on cancer cells. Cellular and Molecular Life Science 58, 16361649.CrossRefGoogle ScholarPubMed
Upcroft, J. A., Dunn, L. A., Wright, J. M., Benakli, K., Upcroft, P. and Vanelle, P. (2006). 5-Nitroimidazole drugs effective against metronidazole-resistant Trichomonas vaginalis and Giardia duodenalis. Antimicrobial Agents and Chemotherapy 50, 344347.CrossRefGoogle ScholarPubMed
Valdez, C. A., Tripp, J. C., Miyamoto, Y., Kalisiak, J., Hruz, P., Andersen, Y. S., Brown, S. E., Kangas, K., Arzu, L. V., Davids, B. J., Gillin, F. D., Upcroft, J. A., Upcroft, P., Fokin, V. V., Smith, D. K., Sharpless, K. B. and Eckmann, L. (2009). Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia. Journal of Medicinal Chemistry 52, 40384053.CrossRefGoogle ScholarPubMed
Wresto, R. P., Chrest, F. J., Leary, J. F., Morris, C., Stetler-Stevenson, M. A. and Gabrielson, E. (2001) Doublet discrimination in DNA cell-cycle analysis. Cytometry 46, 296306.Google Scholar
Young, T. L. and Cepko, C. L. (2004). A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41, 867879.CrossRefGoogle ScholarPubMed