Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T22:32:48.890Z Has data issue: false hasContentIssue false

High-through identification of T cell-specific phage-exposed mimotopes using PBMCs from tegumentary leishmaniasis patients and their use as vaccine candidates against Leishmania amazonensis infection

Published online by Cambridge University Press:  10 September 2018

Gerusa B. Carvalho
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Lourena E. Costa
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Daniela P. Lage
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Fernanda F. Ramos
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Thaís T. O. Santos
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Patrícia A. F. Ribeiro
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Daniel S. Dias
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Beatriz C. S. Salles
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Mariana P. Lima
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Lívia M. Carvalho
Affiliation:
Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, 35.400-000, Ouro Preto, Minas Gerais, Brazil
Ana C. S. Dias
Affiliation:
Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902, Uberlândia, Minas Gerais, Brazil
Patrícia T. Alves
Affiliation:
Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902, Uberlândia, Minas Gerais, Brazil
Michelle L. Franklin
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Renata A. M. Silva
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Mariana C. Duarte
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Minas Gerais, Brazil
Daniel Menezes-Souza
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Minas Gerais, Brazil
Bruno M. Roatt
Affiliation:
Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, 35.400-000, Ouro Preto, Minas Gerais, Brazil
Miguel A. Chávez-Fumagalli
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil
Luiz Ricardo Goulart
Affiliation:
Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av. Amazonas s/n, Campus Umuarama, Bloco 2E, Sala 248, 38400-902, Uberlândia, Minas Gerais, Brazil Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA 95616, USA
Antonio L. Teixeira
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX 77041, USA
Eduardo A. F. Coelho*
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte, 30130-100, Minas Gerais, Brazil Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Minas Gerais, Brazil
*
Author for correspondence: Eduardo A. F. Coelho, E-mail: [email protected]

Abstract

In the current study, phage-exposed mimotopes as targets against tegumentary leishmaniasis (TL) were selected by means of bio-panning cycles employing sera of TL patients and healthy subjects, besides the immune stimulation of peripheral blood mononuclear cells (PBMCs) collected from untreated and treated TL patients and healthy subjects. The clones were evaluated regarding their specific interferon-γ (IFN-γ) and interleukin-4 (IL-4) production in the in vitro cultures, and selectivity and specificity values were calculated, and those presenting the best results were selected for the in vivo experiments. Two clones, namely A4 and A8, were identified and used in immunization protocols from BALB/c mice to protect against Leishmania amazonensis infection. Results showed a polarized Th1 response generated after vaccination, being based on significantly higher levels of IFN-γ, IL-2, IL-12, tumour necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF); which were associated with lower production of specific IL-4, IL-10 and immunoglobulin G1 (IgG1) antibodies. Vaccinated mice presented significant reductions in the parasite load in the infected tissue and distinct organs, when compared with controls. In conclusion, we presented a strategy to identify new mimotopes able to induce Th1 response in PBMCs from TL patients and healthy subjects, and that were successfully used to protect against L. amazonensis infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Co-senior authors.

References

Aghebati-Maleki, L, Bakhshinejad, B, Baradaran, B, Motallebnezhad, M, Aghebati-Maleki, A, Nickho, H, Yousefi, M and Majidi, J (2016) Phage display as a promising approach for vaccine development. Journal of Biomedical Science 23, 66.Google Scholar
Alban, SM, Moura, JF, Thomaz-Soccol, V, Bührer Sékula, S, Alvarenga, LM, Mira, MT, Olortegui, CC and Minozzo, JC (2014) Phage display and synthetic peptides as promising biotechnological tools for the serological diagnosis of leprosy. PLoS One 9, e106222.Google Scholar
Alves, PT, Fujimura, PT, Morais, LD and Goulart, LR (2014) Revisiting the CD14: epitope mapping by phage display. Immunobiology 219, 822829.Google Scholar
Amit, A, Vijayamahantesh, , Dikhit, MR, Singh, AK, Kumar, V, Suman, SS, Singh, A, Kumar, A, Thakur, AK, Das, VR, Das, P and Bimal, S (2017) Immunization with Leishmania donovani protein disulfide isomerase DNA construct induces Th1 and Th17 dependent immune response and protection against experimental visceral leishmaniasis in BALB/c mice. Molecular Immunology 82, 104113.Google Scholar
Arakaki, TL, Buckner, FS, Gillespie, JR, Malmquist, NA, Phillips, MA, Kalyuzhniy, O, Luft, JR, Detitta, GT, Verlinde, CL, Van Voorhis, WC, Hol, WG and Merritt, EA (2008) Characterization of Trypanosoma brucei dihydroorotate dehydrogenase as a possible drug target; structural, kinetic and RNAi studies. Molecular Microbiology 68, 3750.Google Scholar
Atanackovic, D, Altorki, NK, Stockert, E, Williamson, B, Jungbluth, AA, Ritter, E, Santiago, D, Ferrara, CA, Matsuo, M, Selvakumar, A, Dupont, B, Chen, YT, Hoffman, EW, Ritter, G, Old, LJ and Gnjatic, S (2004) Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. The Journal of Immunology 172, 32893296.Google Scholar
Bayih, AG, Daifalla, NS and Gedamu, L (2017) Immune response and protective efficacy of a heterologous DNA-protein immunization with Leishmania superoxide dismutase B1. Biomed Research International 2017, 2145386.Google Scholar
Bezerra, IPS, Amaral Abib, M and Rossi-Bergmann, B (2018) Intranasal but not subcutaneous vaccination with LaAg allows rapid expansion of protective immunity against cutaneous leishmaniasis. Vaccine 36, 24802486.Google Scholar
Campos, BL, Silva, TN, Ribeiro, SP, Carvalho, KI, Kallás, EG, Laurenti, MD and Passero, LF (2015) Analysis of iron superoxide dismutase-encoding DNA vaccine on the evolution of the Leishmania amazonensis experimental infection. Parasite Immunology 37, 407416.Google Scholar
Cano, PG, Gamage, LNA, Marciniuk, K, Hayes, C, Napper, S, Hayes, S and Griebel, PJ (2017) Lambda display phage as a mucosal vaccine delivery vehicle for peptide antigens. Vaccine 35, 72567263.Google Scholar
Coelho, EAF, Tavares, CA, Carvalho, FA, Chaves, KF, Teixeira, KN, Rodrigues, RC, Charest, H, Matlashewski, G, Gazzinelli, RT and Fernandes, AP (2003) Immune responses induced by the Leishmania (leishmania) donovani a2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (leishmania) amazonensis infection. Infection and Immunity 71, 39883994.Google Scholar
Coelho, EA, Chávez-Fumagalli, MA, Costa, LE, Tavares, CA, Soto, M and Goulart, LR (2015) Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy. Revista da Sociedade Brasileira de Medicina Tropical 48, 370379.Google Scholar
Cordeiro, AT, Feliciano, PR, Pinheiro, MP and Nonato, MC (2012) Crystal structure of dihydroorotate dehydrogenase from Leishmania major. Biochimie 94, 17391748.Google Scholar
Costa, LE, Lima, MIS, Chávez-Fumagalli, MA, Menezes-Souza, D, Martins, VT, Duarte, MC, Lage, OS, Lopes, EGP, Lage, DP, Ribeiro, TG, Andrade, PHR, Magalhães-Soares, DF, Soto, M, Tavares, CAP, Goulart, LR and Coelho, EAF (2013) Subtractive phage display selection from canine visceral leishmaniasis identifies novel epitopes that mimic Leishmania infantum antigens with potential serodiagnosis applications. Clinical and Vaccine Immunology 21, 111.Google Scholar
Costa, LE, Chávez-Fumagalli, MA, Martins, VT, Duarte, MC, Lage, DP, Lima, MI, Pereira, NC, Soto, M, Tavares, CA, Goulart, LR and Coelho, EA (2015) Phage-fused epitopes from Leishmania infantum used as immunogenic vaccines confer partial protection against Leishmania amazonensis infection. Parasitology 42, 13351347.Google Scholar
Costa, LE, Salles, BCS, Santos, TTO, Ramos, FF, Lima, MP, Lima, MIS, Ásb, P, Chávez-Fumagalli, MA, Duarte, MC, Menezes-Souza, D, Machado-de-Ávila, RA, Silveira, JAG, Magalhães-Soares, DF, Goulart, LR and Coelho, EAF (2017) Antigenicity of phage clones and their synthetic peptides for the serodiagnosis of canine and human visceral leishmaniasis. Microbial Pathogenesis 110, 1422.Google Scholar
Deak, E, Jayakumar, A, Cho, KW, Goldsmith-Pestana, K, Dondji, B, Lambris, JD and McMahon-Pratt, D (2010) Murine visceral leishmaniasis: IgM and polyclonal B-cell activation lead to disease exacerbation. European Journal of Immunology 40, 13551368.Google Scholar
DebRoy, S, Prosper, O, Mishoe, A and Mubayi, A (2017) Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings. Emerging Themes in Epidemiology 14, 10.Google Scholar
Dias, DS, Martins, VT, Ribeiro, PAF, Ramos, FF, Lage, DP, Tavares, GSV, Mendonça, DVC, Chávez-Fumagalli, MA, Oliveira, JS, Silva, ES, Gomes, DA, Rodrigues, MA, Duarte, MC, Galdino, AS, Menezes-Souza, D and Coelho, EAF (2017) Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis. Parasitology 8, 112.Google Scholar
Dias, DS, Ribeiro, PAF, Martins, VT, Lage, DP, Costa, LE, Chávez-Fumagalli, MA, Ramos, FF, Santos, TTO, Ludolf, F, Oliveira, JS, Mendes, TAO, Silva, ES, Galdino, AS, Duarte, MC, Roatt, BM, Menezes-Souza, D, Teixeira, AL and Coelho, EAF (2018) Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Translational Research. doi: 10.1016/j.trsl.2018.05.001.Google Scholar
Duarte, MC, Lage, DP, Martins, VT, Chávez-Fumagalli, MA, Roatt, BM, Menezes-Souza, D, Goulart, LR, Soto, M, Tavares, CA and Coelho, EA (2016) Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis. Revista da Sociedade Brasileira de Medicina Tropical 49, 398407.Google Scholar
Duarte, MC, Lage, DP, Martins, VT, Costa, LE, Carvalho, AMRS, Ludolf, F, Santos, TTO, Vale, DL, Roatt, BM, Menezes-Souza, D, Fernandes, AP, Tavares, CAP and Coelho, EAF (2017) A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology 222, 251260.Google Scholar
Feliciano, ND, Ribeiro Vda, S, Santos Fde, A, Fujimura, PT, Gonzaga, HT, Goulart, LR and Costa-Cruz, JM (2014) Bacteriophage-fused peptides for serodiagnosis of human strongyloidiasis. PLoS Neglected Tropical Diseases 8, e2792.Google Scholar
Garde, E, Ramírez, L, Corvo, L, Solana, JC, Martín, ME, González, VM, Gómez-Nieto, C, Barral, A, Barral-Netto, M, Requena, JM, Iborra, S and Soto, M (2018) Analysis of the antigenic and prophylactic properties of the Leishmania translation initiation factors eIF2 and eIF2b in natural and experimental leishmaniasis. Frontiers in Cellular and Infection Microbiology 8, 112.Google Scholar
Gerlach, JT, Ulsenheimer, A, Grüner, NH, Jung, MC, Schraut, W, Schirren, CA, Heeg, M, Scholz, S, Witter, K, Zahn, R, Vogler, A, Zachoval, R, Pape, GR and Diepolder, HM (2005) Minimal T-cell-stimulatory sequences and spectrum of HLA restriction of immunodominant CD4+ T-cell epitopes within hepatitis C virus NS3 and NS4 proteins. The Journal of Virology 79, 1242512433.Google Scholar
Goulart, LR, Vieira, CU, Freschi, AP, Capparelli, FE, Fujimura, PT, Almeida, JF, Ferreira, LF, Goulart, IM, Brito-Madurro, AG and Madurro, JM (2010) Biomarkers for serum diagnosis of infectious diseases and their potential application in novel sensor platforms. Critical Reviews in Immunology 30, 201222.Google Scholar
Goulart, LR, Ribeiro, SV and Costa-Cruz, JM (2017) Anti-parasitic antibodies from phage display. Advances in Experimental Medicine and Biology 1053, 155171.Google Scholar
Hernández-Ruiz, J and Becker, I (2006) CD8+ cytotoxic lymphocytes in cutaneous leishmaniasis. Salud Publica de México 48, 430439.Google Scholar
Hirve, S, Kroeger, A, Matlashewski, G, Mondal, D, Banjara, MR, Das, P, Be-Nazir, A, Arana, B and Olliaro, P (2017) Towards elimination of visceral leishmaniasis in the Indian subcontinent-translating research to practice to public health. PLoS Neglected Tropical Diseases 11, e0005889.Google Scholar
Honoré, S, Garin, YJ, Sulahian, A, Gangneux, JP and Derouin, F (1998) Influence of the host and parasite strain in a mouse model of visceral Leishmania infantum infection. FEMS Immunology and Medical Microbiology 21, 231239.Google Scholar
Husmann, LA and Bevan, MJ (1988) Cooperation between helper T cells and cytotoxic T lymphocyte precursors. Annals of the New York Academy of Sciences 532, 158.Google Scholar
Inaoka, DK, Sakamoto, K, Shimizu, H, Shiba, T, Kurisu, G, Nara, T, Aoki, T, Kita, K and Harada, S (2008) Structures of Trypanosoma cruzi dihydroorotate dehydrogenase complexed with substrates and products: atomic resolution insights into mechanisms of dihydroorotate oxidation and fumarate reduction. Biochemistry 47, 1088110891.Google Scholar
Keene, and Forman, J (1982) Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. The Journal of Experimental Medicine 155, 768.Google Scholar
Kuhn, P, Fühner, V, Unkauf, T, Moreira, GM, Frenzel, A, Miethe, S and Hust, M (2016) Recombinant antibodies for diagnostics and therapy against pathogens and toxins generated by phage display. Proteomics Clinical Applications 10, 922948.Google Scholar
Lage, DP, Martins, VT, Duarte, MC, Garde, E, Chávez-Fumagalli, MA, Menezes-Souza, D, Roatt, BM, Tavares, CA, Soto, M and Coelho, EA (2015) Prophylactic properties of a Leishmania-specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunology 37, 646656.Google Scholar
Lima, MP, Costa, LE, Duarte, MC, Menezes-Souza, D, Salles, BCS, Santos, TTO, Ramos, FF, Chávez-Fumagalli, MA, Kursancew, ACS, Ambrosio, RP, Roatt, BM, Machado-de-Avila, RA, Goncalves, DU and Coelho, EAF (2017) Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitology Research 117, 18.Google Scholar
Link, JS, Alban, SM, Soccol, CR, Pereira, GV and Soccol, VT (2017) Synthetic peptides as potential antigens for cutaneous leishmaniosis diagnosis. Journal of Immunological Research 2017, 5871043.Google Scholar
Lipford, GB, Bauer, M, Blank, C, Reiter, R, Wagner, H and Heeg, K (1997) CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. European Journal of Immunology 27, 23402344.Google Scholar
Manoutcharian, K (2005) Bacteriophages as tools for vaccine and drug development. Expert Review of Vaccines 4, 57.Google Scholar
Margaroni, M, Agallou, M, Athanasiou, E, Kammona, O, Kiparissides, C, Gaitanaki, C and Karagouni, E (2017) Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmaniaantigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis. The International Journal of Nanomedicine 12, 61696184.Google Scholar
Martins, VT, Duarte, MC, Chávez-Fumagalli, MA, Menezes-Souza, D, Coelho, CS, de Magalhães-Soares, DF, Fernandes, AP, Soto, M, Tavares, CA and Coelho, EA (2015) A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasites & Vectors 8, 363.Google Scholar
Martins, VT, Duarte, MC, Lage, DP, Costa, LE, Carvalho, AM, Mendes, TA, Roatt, BM, Menezes-Souza, D, Soto, M and Coelho, EA (2017 a) A recombinant chimeric protein composed of human and mice-specific CD4+ and CD8+ T-cell epitopes protects against visceral leishmaniasis. Parasite Immunology 39, e12359.Google Scholar
Martins, VT, Lage, DP, Duarte, MC, Carvalho, AM, Costa, LE, Mendes, TA, Vale, DL, Menezes-Souza, D, Roatt, BM, Tavares, CA, Soto, M and Coelho, EA (2017 b) A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cellular Immunology 313, 3242.Google Scholar
Mendonça, DVC, Martins, VT, Lage, DP, Dias, DS, Ribeiro, PAF, Carvalho, AMRS, Dias, ALT, Miyazaki, CK, Menezes-Souza, D, Roatt, BM, Tavares, CAP, Barichello, JM, Duarte, MC and Coelho, EAF (2018) Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Experimental Parasitology 186, 2435.Google Scholar
Mohsen, MO, Gomes, AC, Cabral-Miranda, G, Krueger, CC, Leoratti, FM, Stein, JV and Bachmann, MF (2017) Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. The Journal of Controlled Release 251, 92100.Google Scholar
Oliveira, MP, Martins, VT, Santos, TTO, Lage, DP, Ramos, FF, Salles, BCS, Costa, LE, Dias, DS, Ribeiro, PAF, Schneider, MS, Machado-de-Ávila, RA, Teixeira, AL, Coelho, EAF and Chávez-Fumagalli, MA (2018) Small myristoylated protein-3, identified as a potential virulence factor in Leishmania amazonensis, proves to be a protective antigen against visceral leishmaniasis. International Journal of Molecular Sciences 19, 1.Google Scholar
Oyarzun, P and Kobe, B (2015) Computer-aided design of T-cell epitope-based vaccines: addressing population coverage. The International Journal of Immunogenetics 42, 313321.Google Scholar
Pinheiro, MP, Iulek, J and Nonato, MC (2008) Crystal structure of Trypanosoma cruzi dihydroorotate dehydrogenase from Y strain. Biochemical and Biophysical Research Communications 369, 812817.Google Scholar
Pinheiro, MP, Emery, FS and Nonato, MC (2013) Target sites for the design of anti-trypanosomatid drugs based on the structure of dihydroorotate dehydrogenase. Current Pharmaceutical Design 19, 26152627.Google Scholar
Poland, GA, Ovsyannikova, IG, Jacobson, RM and Smith, DI (2007) Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clinical Pharmacology & Therapeutics 82, 653664.Google Scholar
Ponte-Sucre, A, Gamarro, F, Dujardin, JC, Barrett, MP, López-Vélez, R, García-Hernández, R, Pountain, AW, Mwenechanya, R and Papadopoulou, B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Neglected Tropical Diseases 11, e0006052.Google Scholar
Pratti, JE, Ramos, TD, Pereira, JC, Fonseca-Martins, AM, Maciel-Oliveira, D, Oliveira-Silva, G, Mello, MF, Chaves, SP, Gomes, DC, Diaz, BL, Rossi-Bergmann, B and Guedes, HLM (2016) Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57BL/6 mice. Parasites & Vectors 9, 534.Google Scholar
Ramírez, L, Corvo, L, Duarte, MC, Chávez-Fumagalli, MA, Valadares, DG, Santos, DM, de Oliveira, CI, Escutia, MR, Alonso, C, Bonay, P, Tavares, CA, Coelho, EA and Soto, M (2014) Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites & Vectors 7, 3.Google Scholar
Ramos, FF, Costa, LE, Dias, DS, Santos, TTO, Rodrigues, MR, Lage, DP, Salles, BCS, Martins, VT, Ribeiro, PAF, Chávez-Fumagalli, MA, Dias, ACS, Alves, PT, Vieira, ELM, Roatt, BM, Menezes-Souza, D, Duarte, MC, Teixeira, AL, Goulart, LR and Coelho, EAF (2017) Selection strategy of phage-displayed immunogens based on an in vitro evaluation of the Th1 response of PBMCs and their potential use as a vaccine against Leishmania infantum infection. Parasites & Vectors 10, 617.Google Scholar
Reed, SG, Coler, RN, Mondal, D, Kamhawi, S and Valenzuela, JG (2016) Leishmania vaccine development: exploiting the host-vector-parasite interface. Expert Review of Vaccines 15, 8190.Google Scholar
Ribeiro, JG, Ferreira, AS, Macedo, SRA, Rossi, NRDLP, da Silva, MCP, Guerra, RNM, de Barros, NB and Nicolete, R (2017) Evaluation of vaccinal effectiveness of preparations containing membrane antigens of Leishmania(l.) amazonensis in experimental cutaneous leishmaniasis model. International Immunopharmacology 47, 227230.Google Scholar
Roman, M, Martin-Orozco, E, Goodman, JS, Nguyen, M-D, Sato, Y, Ronaghy, A, Kornbluth, RS, Richman, DD, Carson, DA and Raz, E (1997) Immunostimulatory DNA sequences function as Th1 promoting adjuvants. Nature Medicine 3, 849854.Google Scholar
Saldarriaga, OA, Travi, BL, Park, W, Perez, LE and Melby, PC (2006) Immunogenicity of a multicomponent DNA vaccine against visceral leishmaniasis in dogs. Vaccine 24, 19281940.Google Scholar
Sanchez, MV, Eliçabe, RJ, Di Genaro, MS, Germanó, MJ, Gea, S, García Bustos, MF, Salomón, MC, Scodeller, EA and Cargnelutti, DE (2017) Total Leishmania antigens with poly(I:C) induce Th1 protective response. Parasite Immunology 39, 11.Google Scholar
Santos, TTO, Martins, VT, Lage, DP, Costa, LE, Salles, BCS, Carvalho, AMRS, Dias, DS, Ribeiro, PAF, Chávez-Fumagalli, MA, Machado-de-Ávila, RA, Roatt, BM, de Magalhães-Soares, DF, Menezes-Souza, D, Coelho, EAF and Duarte, MC (2017) Probing the efficacy of a heterologous Leishmania/l. Viannia braziliensis recombinant enolase as a candidate vaccine to restrict the development of L. infantum in BALB/c mice. Acta Tropica 171, 816.Google Scholar
Schieferdecker, A, Oberle, A, Thiele, B, Hofmann, F, Göthel, M, Miethe, S, Hust, M, Braig, F, Voigt, M, von Pein, UM, Koch-Nolte, F, Haag, F, Alawi, M, Indenbirken, D, Grundhoff, A, Bokemeyer, C, Bacher, U, Kröger, N and Binder, M (2016) A transplant ‘immunome’ screening platform defines a targetable epitope fingerprint of multiple myeloma. Blood 127, 32023214.Google Scholar
Singh, B and Sundar, S (2012) Leishmaniasis: vaccine candidates and perspectives. Vaccine 30, 38343842.Google Scholar
Singh, OP, Hasker, E, Sacks, D, Boelaert, M and Sundar, S (2014) Asymptomatic Leishmania infection: a new challenge for Leishmania control. Clinical and Infectious Diseases 58, 14241429.Google Scholar
Somers, VA, Brandwijk, RJ, Joosten, B, Moerkerk, PT, Arends, JW, Menheere, P, Pieterse, WO, Claessen, A, Scheper, RJ, Hoogenboom, HR and Hufton, SE (2002) A panel of candidate tumor antigens in colorectal cancer revealed by the serological selection of a phage displayed cDNA expression library. The Journal of Immunology 169, 27722780.Google Scholar
Sundar, S and Chakravarty, J (2013) Leishmaniasis: an update of current pharmacotherapy. Expert Opinion on Pharmacotherapy 14, 5363.Google Scholar
Sundar, S and Singh, A (2016) Recent developments and future prospects in the treatment of visceral leishmaniasis. Therapeutic Advances in Infectious Disease 3, 98109.Google Scholar
Toledo-Machado, CM, Bueno, LL, Menezes-Souza, D, Machado-de-Avila, RA, Nguyen, C, Granier, C, Bartholomeu, DC, Chávez-Olórtegui, C and Fujiwara, RT (2015) Use of phage display technology in development of canine visceral leishmaniasis vaccine using synthetic peptide trapped in sphingomyelin/cholesterol liposomes. Parasites & Vectors 8, 133.Google Scholar
Velez, ID, Gilchrist, K, Arbelaez, MP, Rojas, CA, Puerta, JA, Antunes, CM, Zicker, F and Modabber, F (2005) Failure of a killed Leishmania amazonensis vaccine against American cutaneous leishmaniasis in Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 593598.Google Scholar
Vyas, VK and Ghate, M (2011) Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini Review in Medicinal Chemistry 11, 10391055.Google Scholar
Wanasen, N, Xin, L and Soong, L (2008) Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. International Journal for Parasitology 38, 417429.Google Scholar
Wang, R, Chen, L and Cotter, RJ (1990) Effects of peptide hydrophobicity and charge state on molecular ion yields in plasma desorption mass spectrometry. Analytical Chemistry 62, 17001705.Google Scholar
World Health Organization (2010) Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases. World Health Organization Tech Rep Ser 949. Geneva: WHO.Google Scholar
Supplementary material: File

Carvalho et al. supplementary material

Figures S1-S2

Download Carvalho et al. supplementary material(File)
File 968.3 KB