Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T09:56:42.292Z Has data issue: false hasContentIssue false

High polymorphism in genes encoding antigen B from human infecting strains of Echinococcus granulosus

Published online by Cambridge University Press:  27 July 2005

L. KAMENETZKY
Affiliation:
Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas ANLIS “Dr. Carlos G. Malbrán” Av. Velez Sarsfield 563, Buenos Aires (1281), Argentina Instituto Tecnológico de Chascomús (IIB-INTECH)-Conicet/UNSAM, Chascomús, Argentina
P. M. MUZULIN
Affiliation:
Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas ANLIS “Dr. Carlos G. Malbrán” Av. Velez Sarsfield 563, Buenos Aires (1281), Argentina
A. M. GUTIERREZ
Affiliation:
Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas ANLIS “Dr. Carlos G. Malbrán” Av. Velez Sarsfield 563, Buenos Aires (1281), Argentina
S. O. ANGEL
Affiliation:
Instituto Tecnológico de Chascomús (IIB-INTECH)-Conicet/UNSAM, Chascomús, Argentina
A. ZAHA
Affiliation:
Centro de Biotecnologia e Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
E. A. GUARNERA
Affiliation:
Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas ANLIS “Dr. Carlos G. Malbrán” Av. Velez Sarsfield 563, Buenos Aires (1281), Argentina
M. C. ROSENZVIT
Affiliation:
Departamento de Parasitología, Instituto Nacional de Enfermedades Infecciosas ANLIS “Dr. Carlos G. Malbrán” Av. Velez Sarsfield 563, Buenos Aires (1281), Argentina

Abstract

Echinococcus granulosus antigen B (AgB) is encoded by a gene family and is involved in the evasion of the host immune response. E. granulosus exists as a number of strains (G1–G10) that differ in biological characteristics. We used PCR-SSCP followed by DNA sequencing to evaluate sequence variation and transcription profile of AgB in 5 E. granulosus strainsNucleotide sequence data reported in this paper are available in the GenBankTM database under the Accession numbers AY569341-AY569371, AY159484, AY159485, AY608606, AY608607, AY614001.. Twenty-four genomic sequences were isolated and clustered in 3 groups related to 2 of the 5 reported AgB genes. AgB4 genes were present in almost all strains, whereas AgB2 were present as functional genes exclusively in G1/G2 cluster, and as non-functional genes in G5 and the G6/G7 cluster, suggesting inter-strain variation. The AgB transcription patterns, analysed by RT-PCR, showed that AgB2 and AgB4 genes were transcribed in G1, while only the AgB4 gene was transcribed in G7 strain. Cysts from the same strain or cluster shared more genomic and cDNA variants than cysts from different strain or cluster. The level of nucleotide and deduced amino acid sequence variation observed is higher than that reported so far for coding genes of other helminths. Neutrality was rejected for AgB2 genes. These data show the genetic polymorphism of antigen-coding genes among genetically characterized strains of E. granulosus.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bart, J. M., Bardonnet, K., Elfegoun, M. C., Dumon, H., Dia, L., Vuitton, D. A. and Piarroux, R. ( 2004). Echinococcus granulosus strain typing in North Africa: comparison of eight nuclear and mitochondrial DNA fragments. Parasitology 128, 229239.CrossRefGoogle Scholar
Bartholomei-Santos, M. L., Heinzelmann, L. S., Oliveira, R. P., Chemale, G., Gutierrez, A. M., Kamenetzky, L., Haag, K. L. and Zaha, A. ( 2003). Isolation and characterization of microsatellites from the tapeworm Echinococcus granulosus. Parasitology 126, 599605.Google Scholar
Bowles, J., Blair, D. and McManus, D. P. ( 1992). Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology. 54, 165173.CrossRefGoogle Scholar
Bowles, J., Blair, D. and McManus, D. P. ( 1995). A molecular phylogeny of the genus Echinococcus. Parasitology 110, 317328.CrossRefGoogle Scholar
Bowles, J. and McManus, D. P. ( 1993 a). NADH hydrogenase I gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972.Google Scholar
Bowles, J. and McManus, D. P. ( 1993 b). Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular and Biochemical Parasitology 57, 231240.Google Scholar
Chemale, G., Haag, K. L., Ferreira, H. B. and Zaha, A. ( 2001). Echinococcus granulosus antigen B is encoded by a gene family. Molecular and Biochemical Parasitology 116, 233237.CrossRefGoogle Scholar
Chung, J. Y., Bahk, Y. Y., Huh, S., Kang, S. Y., Kong, Y. and Cho, S. Y. ( 1999). A recombinant 10-kDa protein of Taenia solium metacestodes specific to active neurocysticercosis. Journal of Infectious Diseases 180, 13071315.CrossRefGoogle Scholar
Eckert, J. and Thompson, R. C. ( 1997). Intraspecific variation of Echinococcus granulosus and related species with emphasis on their infectivity to humans. Acta Tropica 64, 1934.CrossRefGoogle Scholar
Fernández, V., Ferreira, H. B., Fernandez, C., Zaha, A. and Nieto, A. ( 1996). Molecular characterization of a novel 8 kDa subunit of Echinococcus granulosus antigen B. Molecular and Biochemical Parasitology 77, 247250.CrossRefGoogle Scholar
Fernández, C., Gregory, W. F., Loke, P. and Maizels, R. M. ( 2002). Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences. Molecular and Biochemical Parasitology 122, 171180.CrossRefGoogle Scholar
Frosch, P., Hartmann, M., Muhlschlegel, F. and Frosch, M. ( 1994). Sequence heterogeneity of the echinococcal antigen B. Molecular and Biochemical Parasitology 64, 171175.CrossRefGoogle Scholar
González, G., Nieto, A., Fernandez, C., Orn, A., Wernstedt, C. and Hellman, U. ( 1996). Two different 8 kDa monomers are involved in the oligomeric organization of the native Echinococcus granulosus antigen B. Parasite Immunology 18, 587596.CrossRefGoogle Scholar
González-Sapienza, G., Lorenzo, C. and Nieto, A. ( 2000). Improved immunodiagnosis of cystic hydatid disease by using synthetic peptide with higher diagnostic value than that of its parent protein, Echinococcus granulosus Antigen B. Journal of Clinical Microbiology 38, 39793983.Google Scholar
Haag, K. L., Araujo, A. M., Gottstein, B., Siles-Lucas, M., Thompson, R. C. and Zaha, A. ( 1998 a). Breeding systems in Echinococcus granulosus (Cestoda, Taeniidae): selfing or outcrossing? Parasitology 118, 6371.Google Scholar
Haag, K. L., Araujo, A. M., Gottstein, B. and Zaha, A. ( 1998 b). Selection, recombination and history in a parasitic flatworm (Echinococcus) inferred from nucleotide sequences. Memorias do Instituto Oswaldo Cruz 93, 695702.Google Scholar
Haag, K. L., Alves-Junior, L., Zaha, A. and Ayala, F. J. ( 2004). Contingent, non-neutral evolution in a multicellular parasite: natural selection and gene conversion in the Echinococcus granulosus antigen B gene family. Gene 333, 157167.CrossRefGoogle Scholar
Kamenetzky, L., Gutierrez, A. M., Canova, S. G., Haag, K. L., Guarnera, E. A., Parra, A., García, G. E. and Rosenzvit, M. C. ( 2002). Several strains of Echinococcus granulosus infect livestock and humans in Argentina. Infection Genetics and Evolution 2, 129136.CrossRefGoogle Scholar
Kumar, S., Tamura, K., Jakobsen, I. B. and Nei, M. ( 2001). MEGA2: Molecular Evolutionary Analysis software. Bioinformatics 17, 12441245.CrossRefGoogle Scholar
Lavikainen, A., Lehtinen, M. J., Meri, T., Hirvela-Koski, V. and Meri, S. ( 2003). Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127, 207215.CrossRefGoogle Scholar
Lightowlers, M. W. and Gottstein, B. ( 1995). Echinococcosis/hydatidosis: antigens, immunological and molecular diagnosis. In Echinococcus and Hydatid Disease ( ed. Thompson, R. C. A. and Lymbery, A. J.), pp. 355410. CAB International, Wallingford, Oxon, UK.
Lymbery, A. J. and Thompson, R. C. ( 1996). Species of Echinococcus: pattern and process. Parasitology Today 12, 486491.CrossRefGoogle Scholar
Maizels, R. M. and Kurniawan-Atmadja, A. ( 2002). Variation and polymorphism in helminth parasites. Parasitology 125, S25S37.CrossRefGoogle Scholar
Maniatis, T., Fritsch, E. F. and Sambrook, J. ( 1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Nei, M. and Gojobori, T. ( 1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3, 418426.Google Scholar
Rigano, R., Profumo, E., Bruschi, F., Carulli, G., Azzara, A., Ioppolo, S., Buttari, B., Ortona, E., Margutti, P., Teggi, A. and Siracusano, A. ( 2001). Modulation of human immune response by Echinococcus granulosus antigen B and its possible role in evading host defenses. Infection and Immunity 69, 288296.CrossRefGoogle Scholar
Rosenzvit, M. C., Zhang, L.-H., Kamenetzky, L., Canova, S. G., Guarnera, E. A. and McManus, D. P. ( 1999). Genetic variation and epidemiology of Echinococcus granulosus in Argentina. Parasitology 118, 523530.CrossRefGoogle Scholar
Rosenzvit, M. C., Canova, S. G., Kamenetzky, L. and Guarnera, E. A. ( 2001). Echinococcus granulosus: intraspecific genetic variation assessed by a DNA repetitive element. Parasitology 123, 381388.CrossRefGoogle Scholar
Rott, M. B., Fernandez, V., Farias, S., Ceni, J., Ferreira, H. B., Haag, K. L. and Zaha, A. ( 2000). Comparative analysis of two different subunits of antigen B from Echinococcus granulosus: gene sequences, expression in Escherichia coli and serological evaluation. Acta Tropica 75, 331340.CrossRefGoogle Scholar
Rozas, J. and Rozas, R. ( 2001). DnaSP: DNA Sequence Polymorphism. Distributed by the authors, Department of Genetics, University of Barcelona, available at http://www.bio.ub.es/~julio/DnaSP.html.
Saghir, N., Conde, P. J., Brophy, P. M. and Barret, J. ( 2000). A new diagnostic tool for neurocysticercosis is a member of a cestode specific hydrophobic ligand binding protein family. FEBS Letters 487, 181184.CrossRefGoogle Scholar
Schantz, P. M., Chai, J., Craig, P. S., Eckert, J., Jenkins, D. J., Macpherson, C. N. L. and Thakur, A. ( 1995). Epidemiology and control of hydatid disease. In Echinococcus and Hydatid Disease ( ed. Thompson, R. C. A. and Lymbery, A. J.), pp. 233331. CAB International, Wallingford, Oxon, UK.
Shepherd, J. C., Aitken, A. and McManus, D. ( 1991). A protein secreted in vivo by Echinococcus granulosus inhibits elastase activity and neutrophil chemotaxis. Molecular and Biochemical Parasitology 44, 8190.CrossRefGoogle Scholar
Siles-Lucas, M. and Cuesta-Bandera, C. ( 1996). Echinococcus granulosus in Spain: strain differentiation by SDS-PAGE of somatic and excretory/secretory proteins. Journal of Helminthology 70, 253257.CrossRefGoogle Scholar
Thompson, R. C. A. and McManus, D. P. ( 2001). Aetiology: parasites and life-cycles. In World Health Organization/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern ( ed. Eckert, J., Gemmell, M. A., Meslin, F.-X. and Pawlowski, Z. S.), pp. 119. World Organization for Animal Health, Paris, France.
Thompson, R. C. and McManus, D. P. ( 2002). Towards a taxonomic revision of the genus Echinococcus. Trends in Parasitology 18, 452457.CrossRefGoogle Scholar
Turcekova, L., Snabel, V., D'Amelio, S., Busi, M. and Dubinsky, P. ( 2003). Morphological and genetic characterization of Echinococcus granulosus in the Slovak Republic. Acta Tropica 85, 223229.CrossRefGoogle Scholar
Virginio, V. G., Hernandez, A., Rott, M. B., Monteiro, K. M., Zandonai, A. F., Nieto, A., Zaha, A. and Ferreira, H. B. ( 2003). A set of recombinant antigens from Echinococcus granulosus with potential for use in the immunodiagnosis of human cystic hydatid disease. Clinical and Experimental Immunology 132, 309315.CrossRefGoogle Scholar
Zarlenga, D. S., Rhoads, M. L. and al-Yaman, F. M. ( 1994). A Taenia crassiceps cDNA sequence encoding a putative immunodiagnostic antigen for bovine cysticercosis. Molecular and Biochemical Parasitology 67, 215223.CrossRefGoogle Scholar