Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T00:40:14.976Z Has data issue: false hasContentIssue false

A heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, induced protective immunity against Toxoplasma gondii infection in mice

Published online by Cambridge University Press:  17 May 2007

G. ZHANG
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
V. T. T. HUONG
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
B. BATTUR
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
J. ZHOU
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
H. ZHANG
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
M. LIAO
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
O. KAWASE
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
E. G. LEE
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
G. DAUTU
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
M. IGARASHI
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
Y. NISHIKAWA
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
X. XUAN*
Affiliation:
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
*
*Corresponding author. Tel: +81 155 49 5648. Fax: +81 155 49 5643. E-mail: [email protected]

Summary

The dense granule antigen 4 (GRA4) is known as an immundominant antigen of Toxoplasma gondii and, therefore, is considered as a vaccine candidate. For further evaluation of its vaccine effect, a recombinant plasmid and vaccinia virus, both expressing GRA4, were constructed, and a heterologous prime-boost vaccination regime was performed in a mouse model. The mice immunized with the heterologous prime-boost vaccination regime showed a high level of specific antibody response against GRA4 and a significantly high level of gamma interferon (IFN-γ) production and survived completely against a subsequent challenge infection with a lethal dose of T. gondii. In addition, the formation of cysts was inhibited in the mice vaccinated with the heterologous prime-boost vaccination regime. These results demonstrate that the heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, could induce both humoral and cellular immune responses and provide effective protection against lethal acute and chronic T. gondii infections in mice.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boldbaataar, D., Xuan, X., Kimbita, N., Huang, X., Igarashi, I., Byambaa, B., Battsetseg, B., Battur, B., Battsetseg, G., Batsukh, Z., Nagasawa, H., Fujisaki, K. and Mikami, T. (2001). Detection of antibodies to Hypoderma lineatum in cattle by Western blotting with recombinant hypodermin C antigen. Veterinary Parasitology 99, 147154.CrossRefGoogle Scholar
Buxton, D. (1993). Toxoplasmosis: the first commercial vaccine. Parasitology Today 9, 335337.CrossRefGoogle ScholarPubMed
Chardes, T., Bourguin, I., Mevelec, M. N., Dubremetz, J. F. and Bout, D. (1990). Antibody responses to Toxoplasma gondii in sera, intestinal secretions and milk from orally infected mice and characterization of target antigens. Infection and Immunity 58, 12401246.CrossRefGoogle ScholarPubMed
Desolme, B., Mevelec, M. N., Buzoni, G. D. and Bout, D. (2000). Induction of protective immunity against toxoplasmosis in mice by DNA immunization with a plasmid encoding Toxoplasma gondii GRA4 gene. Vaccine 18, 25122521.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2004). Toxoplasmosis – a waterborne zoonosis. Veterinary Parasitology 126, 5772.CrossRefGoogle ScholarPubMed
Haumont, M., Delhaye, L., Garcia, L., Jurado, M., Mazzu, P., Daminet, V., Verlant, V., Bollen, A., Biemans, R. and Jacquet, A. (2000). Protective immunity against congenital toxoplasmosis with recombinant SAG1 protein in a guinea pig model. Infection and Immunity 68, 49484953.CrossRefGoogle Scholar
Indresh, K. S., Margaret, A. and Liu, M. D. (2003). Gene vaccines. Annals of Internal Medicine 138, 550559.Google Scholar
Irvine, K. R., Chamberlain, R. S., Shulman, E. P., Surman, D. R., Rosenberg, S. A. and Restifo, N. P. (1997). Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. Journal of the National Cancer Institute 89, 15951601.CrossRefGoogle ScholarPubMed
Kim, K. and Weiss, L. M. (2004). Toxoplasma gondii: the model apicomplexan. International Journal for Parasitology 34, 423432.CrossRefGoogle ScholarPubMed
Kobayashi, M., Aosai, F., Hata, H., Mun, H. S., Tagawa, Y., Iwakura, Y. and Yano, A. (1999). Toxoplasma gondii: differences of invasion into tissue of digestive organs between susceptible and resistant strain and influence of IFN-γ in mice inoculated with the cyst perorally. The Journal of Parasitology 85, 973975.CrossRefGoogle ScholarPubMed
Kristina, K. P., Rao, M. and Alving, C. R. (2003). Immunization with DNA through the skin. Methods 31, 232242.Google Scholar
Martin, V., Supanitsky, A., Echeverria, P. C., Litwin, S., Tanos, T., Roodt, A. R., Guarnera, E. A. and Angel, S. O. (2004). Recombinant GRA4 or ROP2 protein combined with alum or the gra4 gene provides partial protection in chronic murine models of toxoplasmosis. Clinical and Diagnostic Laboratory Immunology 11, 704710.Google ScholarPubMed
Mevelec, M. M., Bout, D., Desolme, B., Marchand, H., Magne, R., Bruneel, O. and Buzoni, G. D. (2005). Evaluation of protective effect of DNA vaccination with genes encoding antigens GRA4 and SAG1 associated with GM-CSF plasmid, against acute, chronical and congenital toxoplasmosis in mice. Vaccine 23, 44894499.CrossRefGoogle ScholarPubMed
Miao, J., Li, X., Liu, Z., Xue, C., Bujard, H. and Cui, L. (2006). Immune responses in mice induced by prime-boost schemes of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) -based DNA, protein and recombinant modified vaccinia Ankara vaccines. Vaccine 24, 61876198.CrossRefGoogle ScholarPubMed
Moore, A. C. and Hill, A. V. (2004). Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunological Reviews 199, 126143.CrossRefGoogle ScholarPubMed
Nishikawa, Y., Iwata, A., Katsumata, A., Xuan, X., Nagasawa, H., Igarashi, I., Fujisaki, K., Otsuka, H. and Mikami, T. (2001). Expression of canine interferon-gamma by a recombinant vaccinia virus and its antiviral effect. Virus Research 75, 113121.CrossRefGoogle ScholarPubMed
Ogra, P. L., Faden, H. S., Abraham, R., Duffy, L. C., Sun, M. and Minor, P. D. (1991). Effect of prior immunity on the shedding of virulent revertant virus in feces after oral immunization with live attenuated poliovirus vaccines. The Journal of Infectious Diseases 164, 191194.CrossRefGoogle ScholarPubMed
Ramshaw, I. A. and Ramsay, A. J. (2000). The prime-boost strategy: exciting prospects for improved vaccination. Immunology Today 21, 163165.CrossRefGoogle ScholarPubMed
Rorman, E., Zamir, C. S., Rilkis, I. and Ben, D. H. (2006). Congenital toxoplasmosis–prenatal aspects of Toxoplasma gondii infection. Reproductive Toxicology 21, 458472.CrossRefGoogle ScholarPubMed
Saito, S., Aosai, F., Rikihisa, F., Mun, H. S., Norose, K., Chen, M., Kuroki, T., Asano, T., Ochiai, T., Hata, H., Ichinose, M. and Yano, A. (2001). Establishment of gene-vaccinated skin grafting against Toxoplasma gondii infection in mice. Vaccine 19, 21722180.CrossRefGoogle ScholarPubMed
Shedlock, D. J. and Weiner, D. B. (2000). DNA vaccination: antigen presentation and the induction of immunity. Journal of Leukocyte Biology 68, 793806.CrossRefGoogle ScholarPubMed
Vuola, J. M., Keating, S., Webster, D. P., Berthoud, T., Dunachie, S., Gilbert, S. C. and Hill, A. V. (2005). Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. The Journal of Immunology 174, 449455.CrossRefGoogle ScholarPubMed
Weiss, R., Scheiblhofer, S., Freund, J., Ferreira, F., Livey, I. and Thalhamer, J. (2002). Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 20, 31483154.CrossRefGoogle Scholar
Xuan, X., Nakamura, T., Sato, I., Tuchiya, K., Nosetto, E., Ishihana, A. and Ueda, S. (1995). Characterization of pseudorabies virus glycoprotein gII expressed by recombinant baculovirus. Virus Research 36, 151161.CrossRefGoogle ScholarPubMed
Yap, J. S. and Sher, A. (1999). Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology 201, 240247.CrossRefGoogle ScholarPubMed