Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T04:24:03.777Z Has data issue: false hasContentIssue false

Heritability of human hookworm infection in Papua New Guinea

Published online by Cambridge University Press:  21 October 2008

L. PH. BREITLING
Affiliation:
Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
A. J. WILSON
Affiliation:
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
A. RAIKO
Affiliation:
Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
M. LAGOG
Affiliation:
Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
P. SIBA
Affiliation:
Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
M.-A. SHAW
Affiliation:
Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
R. J. QUINNELL*
Affiliation:
Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
*
*Corresponding author: Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK. Tel: +44 113 3432824. Fax: +44 113 3432835. E-mail: [email protected]

Summary

Hookworms infect approximately 740 million humans worldwide and are an important cause of morbidity. The present study examines the role of additive genetic effects in determining the intensity of hookworm infection in humans, and whether these effects vary according to the sex of the host. Parasitological and epidemiological data for a population of 704 subjects in Papua New Guinea were used in variance components analysis. The ‘narrow-sense’ heritability of hookworm infection was estimated as 0·15±0·04 (P<0·001), and remained significant when controlling for shared environmental (household) effects. Allowing the variance components to vary between the sexes of the human host consistently revealed larger additive genetic effects in females than in males, reflected by heritabilities of 0·18 in females and 0·08 in males in a conservative model. Household effects were also higher in females than males, although the overall household effect was not significant. The results indicate that additive genetic effects are an important determinant of the intensity of human hookworm infection in this population. However, despite similar mean and variance of intensity in each sex, the factors responsible for generating variation in intensity differ markedly between males and females.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almasy, L. and Blangero, J. (1998). Multipoint quantitative trait linkage analysis in general pedigrees. American Journal of Human Genetics 62, 11981211.CrossRefGoogle ScholarPubMed
Anderson, R. M. and Schad, G. A. (1985). Hookworm burdens and faecal egg counts: an analysis of the biological basis of variation. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 812825.CrossRefGoogle ScholarPubMed
Bethony, J., Loukas, A., Smout, M., Brooker, S., Mendez, S., Plieskatt, J., Goud, G., Bottazzi, M. E., Zhan, B., Wang, Y., Williamson, A., Lustigman, S., Correa-Oliveira, R., Xiao, S. and Hotez, P. J. (2005). Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB Journal 19, 17431745.CrossRefGoogle ScholarPubMed
Bethony, J., Williams, J. T., Blangero, J., Kloos, H., Gazzinelli, A., Soares-Filho, B., Coelho, L., Alves-Fraga, L., Williams-Blangero, S., Loverde, P. T. and Correa-Oliveira, R. (2002). Additive host genetic factors influence fecal egg excretion rates during Schistosoma mansoni infection in a rural area in Brazil. American Journal of Tropical Medicine and Hygiene 67, 336343.CrossRefGoogle Scholar
Bethony, J. M. and Quinnell, R. J. (2008). Genetic epidemiology of human schistosomiasis in Brazil. Acta Tropica (in the Press). doi:10.1016/j.actatropica.2007.11.008CrossRefGoogle ScholarPubMed
Bishop, S. C., Bairden, K., McKellar, Q. A., Park, M. and Stear, M. J. (1996). Genetic parameters for faecal egg count following mixed, natural, predominantly Ostertagia circumcincta infection and relationships with live weight in young lambs. Animal Science 63, 423428.CrossRefGoogle Scholar
Bradley, M. and Chandiwana, S. K. (1990). Age-dependency in predisposition to hookworm infection in the Burma valley area of Zimbabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 826828.CrossRefGoogle ScholarPubMed
Brooker, S., Alexander, N., Geiger, S., Moyeed, R. A., Stander, J., Fleming, F., Hotez, P. J., Correa-Oliveira, R. and Bethony, J. (2006). Contrasting patterns in the small-scale heterogeneity of human helminth infections in urban and rural environments in Brazil. International Journal for Parasitology 36, 11431151.CrossRefGoogle Scholar
Brooker, S., Bethony, J. and Hotez, P. J. (2004). Human hookworm infection in the 21st century. Advances in Parasitology 58, 197288.CrossRefGoogle ScholarPubMed
Cho, H. S., Guo, G., Iritani, B. J. and Hallfors, D. D. (2006). Genetic contribution to suicidal behaviours and associated risk factors among adolescents in the US. Prevention Science 7, 303311.CrossRefGoogle Scholar
Coltman, D. W., Pilkington, J., Kruuk, L. E. B., Wilson, K. and Pemberton, J. M. (2001). Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55, 21162125.Google Scholar
de Silva, N. R., Brooker, S., Hotez, P. J., Montresor, A., Engels, D. and Savioli, L. (2003). Soil-transmitted helminth infections: updating the global picture. Trends in Parasitology 19, 547551.CrossRefGoogle ScholarPubMed
Ellis, M. K., Li, Y., Rong, Z., Chen, H. and McManus, D. P. (2006). Familial aggregation of human infection with Schistosoma japonicum in the Poyang Lake region, China. International Journal for Parasitology 36, 7177.CrossRefGoogle ScholarPubMed
Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J. and Thompson, R. (2002). ASReml User Guide Release 1.0. VSN International Ltd, Hemel Hempstead, UK.Google Scholar
Haswell-Elkins, M. R., Elkins, D. B., Manjula, K., Michael, E. and Anderson, R. M. (1988). An investigation of hookworm infection and reinfection following mass anthelmintic treatment in the south Indian fishing community of Vairavankuppam. Parasitology 96, 565577.CrossRefGoogle ScholarPubMed
Hill, R. B. (1926). The estimation of the number of hookworms harbored, by the use of the dilution egg count method. American Journal of Hygiene 6, 1941.Google Scholar
Horton, J. (2000). Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology 121, S113S132.CrossRefGoogle ScholarPubMed
Hotez, P. J., Brooker, S., Bethony, J. M., Bottazzi, M. E., Loukas, A. and Xiao, S. (2004). Hookworm infection. New England Journal of Medicine 351, 799807.CrossRefGoogle ScholarPubMed
King, C. H., Blanton, R. E., Muchiri, E. M., Ouma, J. H., Kariuki, H. C., Mungai, P., Magak, P., Kadzo, H., Ireri, E. and Koech, D. K. (2004). Low heritable component of risk for infection intensity and infection-associated disease in urinary schistosomiasis among Wadigo village populations in Coast Province, Kenya. American Journal of Tropical Medicine and Hygiene 70, 5762.CrossRefGoogle ScholarPubMed
Klein, S. L. (2004). Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunology 26, 247264.CrossRefGoogle ScholarPubMed
Lange, K. and Boehnke, M. (1983). Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. American Journal of Medical Genetics 14, 513524.CrossRefGoogle ScholarPubMed
Lange, K., Westlake, J. and Spence, M. A. (1976). Extensions to pedigree analysis. III. Variance components by the scoring method. Annals of Human Genetics 39, 485491.Google Scholar
Ober, C., Pan, L., Phillips, N., Parry, R. and Kurina, L. M. (2006). Sex-specific genetic architecture of asthma-associated quantitative trait loci in a founder population. Current Allergy and Asthma Reports 6, 241246.CrossRefGoogle Scholar
Pilia, G., Chen, W. M., Scuteri, A., Orru, M., Albai, G., Dei, M., Lai, S., Usala, G., Lai, M., Loi, P., Mameli, C., Vacca, L., Deiana, M., Olla, N., Masala, M., Cao, A., Najjar, S. S., Terracciano, A., Nedorezov, T., Sharov, A., Zonderman, A. B., Abecasis, G. R., Costa, P., Lakatta, E. and Schlessinger, D. (2006). Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genetics 2, 12071223.Google Scholar
Pritchard, D. I., Quinnell, R. J., Slater, A. F., McKean, P. G., Dale, D. D., Raiko, A. and Keymer, A. E. (1990). Epidemiology and immunology of Necator americanus infection in a community in Papua New Guinea: humoral responses to excretory-secretory and cuticular collagen antigens. Parasitology 100, 317326.Google Scholar
Pritchard, D. I., Quinnell, R. J. and Walsh, E. A. (1995). Immunity in humans to Necator americanus: IgE, parasite weight and fecundity. Parasite Immunology 17, 7175.CrossRefGoogle ScholarPubMed
Quinnell, R. J. (2003). Genetics of susceptibility to human helminth infection. International Journal for Parasitology 33, 12191231.CrossRefGoogle ScholarPubMed
Quinnell, R. J., Griffin, J., Nowell, M. A., Raiko, A. and Pritchard, D. I. (2001). Predisposition to hookworm infection in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 139142.CrossRefGoogle ScholarPubMed
Quinnell, R. J., Pritchard, D. I., Raiko, A., Brown, A. P. and Shaw, M. A. (2004). Immune responses in human necatoriasis: association between interleukin-5 responses and resistance to reinfection. Journal of Infectious Diseases 190, 430438.CrossRefGoogle ScholarPubMed
Quinnell, R. J., Slater, A. F., Tighe, P., Walsh, E. A., Keymer, A. E. and Pritchard, D. I. (1993). Reinfection with hookworm after chemotherapy in Papua New Guinea. Parasitology 106, 379385.CrossRefGoogle ScholarPubMed
R Development Core Team. (2006). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Saathoff, E., Olsen, A., Sharp, B., Kvalsvig, J. D., Appleton, C. C. and Kleinschmidt, I. (2005). Ecologic covariates of hookworm infection and reinfection in rural Kwazulu-natal/south Africa: a geographic information system-based study. American Journal of Tropical Medicine and Hygiene 72, 384391.Google Scholar
Schad, G. A. and Anderson, R. M. (1985). Predisposition to hookworm infection in humans. Science 228, 15371540.CrossRefGoogle ScholarPubMed
Scurrah, K. J., Byrnes, G. B., Hopper, J. L. and Harrap, S. B. (2006). Sex differences in genetic and environmental determinants of pulse pressure. Genetic Epidemiology 30, 397408.CrossRefGoogle ScholarPubMed
Smith, J. A., Wilson, K., Pilkington, J. G. and Pemberton, J. M. (1999). Heritable variation in resistance to gastro-intestinal nematodes in an unmanaged mammal population. Proceedings of the Royal Society of London, B 266, 12831290.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry. W. H. Freeman and Company, New York, USA.Google Scholar
Stear, M. J., Bairden, K., Duncan, J. L., Holmes, P. H., McKellar, Q. A., Park, M., Strain, S., Murray, M., Bishop, S. C. and Gettinby, G. (1997). How hosts control worms. Nature, London 389, 27.CrossRefGoogle ScholarPubMed
Stoll, N. R. (1924). Investigations on the control of hookworm disease. XXXIII. The significance of egg-count data in necator infestations. American Journal of Hygiene 4, 466500.Google Scholar
Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics 50, 11711177.CrossRefGoogle ScholarPubMed
Towne, B., Blangero, J. and Siervogel, R. M. (1993). Genotype by sex interaction in measures of lipids, lipoproteins, and apolipoproteins. Genetic Epidemiology 10, 611616.Google Scholar
Towne, B., Siervogel, R. M. and Blangero, J. (1997). Effects of genotype-by-sex interaction on quantitative trait linkage analysis. Genetic Epidemiology 14, 10531058.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York and London.CrossRefGoogle Scholar
Weiss, L. A., Pan, L., Abney, M. and Ober, C. (2006). The sex-specific genetic architecture of quantitative traits in humans. Nature Genetics 38, 218222.CrossRefGoogle ScholarPubMed
Williams-Blangero, S., Blangero, J. and Bradley, M. (1997). Quantitative genetic analysis of susceptibility to hookworm infection in a population from rural Zimbabwe. Human Biology 69, 201208.Google Scholar
Williams-Blangero, S., McGarvey, S. T., Subedi, J., Wiest, P. M., Upadhayay, R. P., Rai, D. R., Jha, B., Olds, G. R., Guanling, W. and Blangero, J. (2002). Genetic component to susceptibility to Trichuris trichiura: evidence from two Asian populations. Genetic Epidemiology 22, 254264.Google Scholar
Williams-Blangero, S., Subedi, J., Upadhayay, R. P., Manral, D. B., Rai, D. R., Jha, B., Robinson, E. S. and Blangero, J. (1999). Genetic analysis of susceptibility to infection with Ascaris lumbricoides. American Journal of Tropical Medicine and Hygiene 60, 921926.CrossRefGoogle ScholarPubMed