Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T15:04:22.790Z Has data issue: false hasContentIssue false

Halfway up the trophic chain: development of parasite communities in the sparid fish Boops boops

Published online by Cambridge University Press:  02 October 2007

A. PÉREZ-DEL OLMO*
Affiliation:
Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
M. FERNÁNDEZ
Affiliation:
Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain
J. A. RAGA
Affiliation:
Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain
A. KOSTADINOVA
Affiliation:
Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain Central Laboratory of General Ecology, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
R. POULIN
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
*
*Corresponding author: Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, PO Box 22085, 46071 Valencia, Spain. Tel: +34 963543657. Fax: +34 963543733. E-mail: [email protected]

Summary

We examined the patterns of composition and structure of parasite communities in the Mediterranean sparid fish Boops boops along a gradient of fish sizes, using a large sample from a single population. We tested the hypothesis that species forming the core of the bogue parasite fauna (i.e. species which have a wide geographical range and are responsible for recognizable community structure) appear early in the fish ontogeny. The sequential community development observed supported the prediction that core species appear in the fish population earlier than rare and stochastic species. There was also a strong correlation between the order of ‘arrival’ of the species and their overall prevalence. Six key species were responsible for recognizable community structure across size/age cohorts; the addition to this baseline community of key parasite species resulted in a nested structure that is linked to differential species abundance rather than fish size. Information on the life-cycles, distribution and host range of the parasites is used to explain the observed patterns of parasite community structure. We conclude that the small mouth size of B. boops coupled with suction feeding may provide a setting for passive sampling as a mechanism leading to non-random parasite community structure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atmar, W. and Patterson, B. D. (1995). The Nestedness Temperature Calculator: a Visual Basic Program, including 294 Presence-Absence Matrices. AICS Res. Inc., University Park, New Mexico, and The Field Mus., Chicago, USA. (http://aicsresearch.com/nestedness/tempcalc.html).Google Scholar
Bariche, M., Alwan, N. and El-Fadel, M. (2006). Structure and biological characteristics of purse seine landings off the Lebanese coast (eastern Mediterranean). Fisheries Research 82, 246252.Google Scholar
Bartoli, P. (1987). Caractères adaptifs originaux des Digènes intestinaux de Sarpa salpa (Teleostei, Sparidae) et leur interprétation en termes d’évolution. Annales de Parasitologie Humaine et Comparée 62, 542576.CrossRefGoogle Scholar
Bartoli, P., Gibson, D. I. and Bray, R. A. (2005). Digenean species diversity in teleost fish from a nature reserve off Corsica, France (Western Mediterranean), and a comparison with other Mediterranean regions. Journal of Natural History 39, 4770.Google Scholar
Bartoli, P., Morand, S., Ruitort, J. J. and Combes, C. (2000). Acquisition of parasites correlated with social rank and behavioural changes in a fish species. Journal of Helminthology 74, 289293.CrossRefGoogle Scholar
Bauchot, M. L. and Hureau, J. C. (1986). Sparidae. In Fishes of the North-Eastern Atlantic and the Mediterranean. Vol. II (ed. Whitehead, P. J. P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J. and Tortonese, E.), pp. 883907. Unesco, Paris.Google Scholar
Bell, J. D. and Harmelin-Vivien, M. I. (1983). Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 2. Feeding habits. Tethys 11, 114.Google Scholar
Boyra, A., Sanchez-Jerez, P., Tuya, F., Espino, F. and Haroun, R. (2004). Attraction of wild coastal fishes to an Atlantic subtropical cage fish farm, Gran Canaria, Canary Islands. Environmental Biology of Fishes 70, 393401.CrossRefGoogle Scholar
Breck, J. E. (1993). Foraging theory and piscivorous fish: are forage fish just big zooplankton? Transactions of the American Fisheries Society 122, 902911.2.3.CO;2>CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology in its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
Castro, J. J. and Hernández-García, V. (1995). Ontogenetic changes in mouth structures, foraging behaviour and habitat use of Scomber japonicus and Illex coindetii. Scientia Marina 59, 347355.Google Scholar
Cushing, D. H. (1976). Biology of fishes in the pelagic community. In The Ecology of the Seas (ed. Cushing, D. H. and Walsh, J. J.), pp. 317340. Blackwell, Oxford.Google Scholar
Dempster, T., Sanchez-Jerez, P., Bayle-Sempere, J. T., Giménez-Casalduero, F. and Valle, C. (2002). Attraction of wild fish to sea-cage fish in the south-western Mediterranean Sea: spatial and short-term temporal variability. Marine Ecology Progress Series 242, 237252.Google Scholar
Dogiel, V. A., Petrushevski, G. K. and Polyanski, Y. I. (1958). Parasitology of Fishes. Oliver and Boyd, London (Translated from Russian by Z. Kabata, 1961).Google Scholar
Fernández, I., Moyano, F. J., Díaz, M. and Martínez, T. (2001). Characterisation of α-amilase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). Journal of Experimental Marine Biology and Ecology 262, 112.Google Scholar
Froese, R. and Pauly, D. (Eds) (2007). FishBase. World Wide Web electronic publication. www.fishbase.org, version (04/2007).Google Scholar
Guégan, J. F. and Hugueny, B. (1994). A nested parasite species subset pattern in tropical fish: host as major determinant of parasite infracommunity structure. Oecologia 100, 184189.CrossRefGoogle ScholarPubMed
Janovy, J. Jr., Clopton, R. E., Clopton, D. A., Snyder, S. D., Efting, A. and Krebs, L. (1995). Species density distributions as null models for ecologically significant interactions of parasite species in an assemblage. Ecological Modelling 77, 189196.CrossRefGoogle Scholar
Johnson, M. W., Nelson, P. A. and Dock, T. A. (2004). Structuring mechanisms of yellow perch (Perca flavescens) parasite communities: host age, diet, and local factors. Canadian Journal of Zoology 82, 12911301.CrossRefGoogle Scholar
Jousson, O. and Bartoli, P. (1999). The life-cycle of three species of the Mesometridae (Digenea) with comments on the taxonomic status of this family. Systematic Parasitology 44, 217228.Google Scholar
Jukic, S. (1972). Nutrition of the hake (Merluccius merluccius), bogue (Boops boops), striped mullet (Mullus barbatus) and pandora (Pagellus erythrinus) in the Bay of Kaŝtela. Acta Adriatica 14, 340.Google Scholar
Karpouzi, V. S. and Stergiou, K. I. (2003). The relationship between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. Journal of Fish Biology 62, 13531365.CrossRefGoogle Scholar
Kennedy, C. R. (1990). Helminth communities in freshwater fish: structured communities or stochastic assemblages? In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J. M.), pp. 130156. Chapman and Hall, London.Google Scholar
Kennedy, C. R., Bush, A. O. and Aho, J. M. (1986). Patterns in helminth communities: why are birds and fish different? Parasitology 93, 205215.Google Scholar
Linde, M., Palmer, M. and Gómez-Zurita, J. (2004). Differential correlates of diet and phylogeny on the shape of the premaxilla and anterior tooth in sparid fishes (Perciformes: Sparidae). Journal of Evolutionary Biology 17, 941952.CrossRefGoogle ScholarPubMed
Lo, C. M., Morand, S. and Galzin, R. (1998). Parasite diversity/host age relationship in three coral-reef fishes from French Polynesia. International Journal for Parasitology 28, 16951708.CrossRefGoogle ScholarPubMed
Luque, J. L., Mouillot, D. and Poulin, R. (2004). Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671682.CrossRefGoogle ScholarPubMed
MacPherson, E. and Duarte, C. M. (1991). Bathymetric trends in demersal fish size: is there a general relationship? Marine Ecology Progress Series 71, 103112.CrossRefGoogle Scholar
Magnhagen, C. and Heibo, E. (2001). Gape size allometry in pike reflects variation between lakes in prey availability and relative body depth. Functional Ecology 15, 754762.CrossRefGoogle Scholar
Muñoz, G., Grutter, A. S. and Cribb, T. H. (2006). Endoparasite communities of five fish species (Labridae: Chelininae) from Lizard Island: how important is the ecology and phylogeny of the hosts. Parasitology 132, 363374.CrossRefGoogle ScholarPubMed
Pérez-del Olmo, A., Fernández, M., Gibson, D. I., Raga, J. A. and Kostadinova, A. (2007 a). Descriptions of some unusual digeneans from Boops boops L. (Sparidae) and a complete checklist of its metazoan parasites. Systematic Parasitology 66, 137158.CrossRefGoogle Scholar
Pérez-del Olmo, A., Raga, J. A., Kostadinova, A. and Fernández, M. (2007 b). Parasite communities in Boops boops (L.) (Sparidae) after the Prestige oil-spill: detectable alterations. Marine Pollution Bulletin 54, 266276.CrossRefGoogle ScholarPubMed
Poulin, R. (2000). Variation in the intraspecific relationship between fish length and intensity of parasite infection: biological and statistical causes. Journal of Fish Biology 56, 123137.CrossRefGoogle Scholar
Poulin, R. and Guégan, J. F. (2000). Nestedness, anti-nestedness, and the relationship between prevalence and intensity in ectoparasite assemblages of marine fish: a spatial model of species coexistence. International Journal for Parasitology 30, 11471152.Google Scholar
Poulin, R. and Valtonen, E. T. (2001). Nested assemblages resulting from host size variation: the case of endoparasite communities in fish hosts. International Journal for Parasitology 31, 11941204.CrossRefGoogle ScholarPubMed
Power, A. M., Balbuena, J. A. and Raga, J. A. (2005). Parasite infracommunities as predictors of harvest location of bogue (Boops boops L.): a pilot study using statistical classifiers. Fisheries Research 72, 229239.Google Scholar
Renaud, F., Romestand, B. and Trilles, J. P. (1980). Faunistique et écologie des métazoaires parasites de Boops boops Linnaeus (1758) (Téléostéen Sparidae) dans le Golfe du Lion. Annales de Parasitologie Humaine et Comparée 55, 467476.CrossRefGoogle ScholarPubMed
Rohde, K. (1989). Simple ecological systems, simple solutions to complex problems. Evolutionary Theory 8, 305350.Google Scholar
Rohde, K., Worthen, W. B., Heap, M., Hugueny, B. and Guégan, J. F. (1998). Nestedness in assemblages of metazoan ecto-and endoparasites of marine fish. International Journal for Parasitology 28, 543549.Google Scholar
Ruitton, S., Verlaque, M. and Boudouresque, C. F. (2005). Seasonal changes of the introduced Caulerpa racemosa var. cylindracea (Caulerpales, Chlorophyta) at the northwest limit of its Mediterranean range. Aquatic Botany 82, 5570.Google Scholar
Saad-Fares, A. and Combes, C. (1992). Abundance/host size relationship in a fish trematode community. Journal of Helminthology 66, 187192.CrossRefGoogle Scholar
Sánchez, P., Demestre, M. and Martín, P. (2004). Characterisation of the discards generated by bottom trawling in the northwestern Mediterranean. Fisheries Research 67, 7180.CrossRefGoogle Scholar
Sasal, P., Niquil, N. and Bartoli, P. (1999). Community structure of digenean parasites of sparid and labrid fishes of the Mediterranean sea: a new approach. Parasitology 119, 635648.Google Scholar
Stergiou, K. I. and Karpouzi, V. S. (2002). Feeding habits and trophic levels of Mediterranean fish. Reviews in Fish Biology and Fisheries 11, 217254.Google Scholar
Timi, J. A. and Poulin, R. (2003). Parasite community structure within and across host populations of a marine pelagic fish: how repeatable is it? International Journal for Parasitology 33, 13531362.Google Scholar
Valle, C., Bayle-Sempere, J. T. and Ramos-Esplá, A. A. (2003). Aproximación multiescalar al estudio de la ictiofauna del litoral rocoso de Ceuta (España). Boletín Instituto Español de Oceanografía 19, 419431.Google Scholar
Vidal-Martinez, V. M. and Poulin, R. (2003). Spatial and temporal repeatability in parasite community structure of tropical fish hosts. Parasitology 127, 387398.CrossRefGoogle ScholarPubMed
Vidal-Martinez, V. M., Kennedy, C. R. and Aguirre-Macedo, M. L. (1998). The structuring process of the macroparasite community of an experimental population of Cichlasoma urophthalmus through time. Journal of Helminthology 72, 199207.Google Scholar
Williams, H. H. and MacKenzie, K. (2003). Marine parasites as pollution indicators: an update. Parasitology 126, S27S41.Google Scholar
Zelmer, D. A. and Arai, H. P. (2004). Development of nestedness: Host biology as a community process in parasite infracommunities of yellow perch (Perca flavescens (Mitchill)) from Garner Lake, Alberta. Journal of Parasitology 90, 435436.Google Scholar