Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-20T20:56:57.270Z Has data issue: false hasContentIssue false

Genetics: modes of reproduction and genetic analysis

Published online by Cambridge University Press:  22 March 2016

ADRIAN STREIT*
Affiliation:
Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
*
*Corresponding author. Department for Evolutionary Biology, Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, D-72076 Tübingen, Germany. E-mail: [email protected]

Summary

Classical and reverse genetics remain invaluable tools for the scientific investigation of model organisms. Genetic analysis of endoparasites is generally difficult because the sexual adults required for crossing and other manipulations are usually hidden within their host. Strongyloides spp. and Parastrongyloides spp. are notable exceptions to this and their free-living adults offer unique opportunities to manipulate these parasites experimentally. Here I review the modes of inheritance in the two generations of Strongyloides/Parastrongyloides and I discuss the opportunities and the limitations of the currently available methodology for the genetic analysis of these two genera.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, R., Chang, Z., Younis, A. E., Langnick, C., Li, N., Chen, W., Brattig, N. and Dieterich, C. (2013). Conserved miRNAs are candidate post-transcriptional regulators of developmental arrest in free-living and parasitic nematodes. Genome Biology and Evolution 5, 12461260.CrossRefGoogle ScholarPubMed
Albarqi, M. M., Stoltzfus, J. D., Pilgrim, A. A., Nolan, T. J., Wang, Z., Kliewer, S. A., Mangelsdorf, D. J. and Lok, J. B. (2016). Regulation of life cycle checkpoints and developmental activation of infective larvae in Strongyloides stercoralis by dafachronic acid. PLoS Pathogens 12, e1005358.CrossRefGoogle ScholarPubMed
Albertson, D. G., Nwaorgu, O. C. and Sulston, J. E. (1979). Chromatin diminution and a chromosomal mechanism of sexual differentiation in Strongyloides papillosus . Chromosoma 75, 7587.CrossRefGoogle Scholar
Antebi, A., Yeh, W. H., Tait, D., Hedgecock, E. M. and Riddle, D. L. (2000). daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans . Genes and Development 14, 15121527.CrossRefGoogle ScholarPubMed
Arizono, N. (1976). Studies on the free-living generations of Strongyloides planiceps Rogers, 1943. II. Effect of temperature on the developmental types. Japanese Journal of Parasitol 25, 328335.Google Scholar
Beach, T. D. (1936). Experimental studies on human and primate species of Strongyloides – V. The free-living phase of the life cycle. American Journal of Hygiene 23, 243277.Google Scholar
Biewener, V., Welz, C., Khumpool, G., Kuttler, U. and Schnieder, T. (2012). Strongyloides papillosus: changes in transcript levels of lysozyme and aspartic protease 2 in percutaneously migrated larvae. Experimental Parasitology 132, 6268.CrossRefGoogle ScholarPubMed
Bolla, R. I. and Roberts, L. S. (1968). Gametogenesis and chromosomal complement in Strongyloides ratti (Nematoda: Rhabdiasoidea). Journal of Parasitology 54, 849855.CrossRefGoogle ScholarPubMed
Brumpt, E. (1921). Recherches sur le déterminisme des sexes et de l`évolution des Anguillules parasites (Strongyloides). Comptes rendu hebdomadaires des séances et mémoires de la Société de Biologie et de ses filiales 85, 149152.Google Scholar
Castelletto, M. L., Massey, H. C. Jr. and Lok, J. B. (2009). Morphogenesis of Strongyloides stercoralis infective larvae requires the DAF-16 ortholog FKTF-1. PLoS Pathogens 5, e1000370.CrossRefGoogle ScholarPubMed
Chang, C. H. and Graham, G. L. (1957). Parasitism, Parthenogenesis and Polyploidy: the life cycle of Strongyloides papillosus . Journal of Parasitology 43, 13.Google Scholar
Chitwood, B. G. and Graham, G. L. (1940). Absence of Vitelline Membranes on Developing Eggs in Parasitic Females of Strongyloides ratti . Journal of Parasitology 26, 183190.CrossRefGoogle Scholar
Cho, S. W., Lee, J., Carroll, D. and Kim, J. S. (2013). Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195, 11771180.CrossRefGoogle ScholarPubMed
Crook, M. (2014). The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. International Journal for Parasitology 44, 18.CrossRefGoogle ScholarPubMed
Crook, M. and Viney, M. E. (2005). The effect of non-immune stresses on the development of Strongyloides ratti . Parasitology 131, 383392.CrossRefGoogle ScholarPubMed
Crook, M., Thompson, F. J., Grant, W. N. and Viney, M. E. (2005). daf-7 and the development of Strongyloides ratti and Parastrongyloides trichosuri . Molecular and Biochemical Parasitology 139, 213223.CrossRefGoogle ScholarPubMed
Crook, M., Grant, K. and Grant, W. N. (2010). Failure of Parastrongyloides trichosuri daf-7 to complement a Caenorhabditis elegans daf-7 (e1372) mutant: implications for the evolution of parasitism. International Journal for Parasitology 40, 16751683.CrossRefGoogle ScholarPubMed
Dieterich, C., Roeseler, W. and Srinivasan, J. (2006). Pristionchus pacificus genomics: from genetics to genome sequence. In WormBook (ed. The C. elegans Research Community), WormBook. doi: 10.1895/wormbook.1.116.1, http://www.wormbook.org.Google Scholar
Doitsidou, M., Poole, R. J., Sarin, S., Bigelow, H. and Hobert, O. (2010). C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PLoS ONE 5, e15435.CrossRefGoogle ScholarPubMed
Eberhardt, A. G., Mayer, W. E. and Streit, A. (2007). The free-living generation of the nematode Strongyloides papillosus undergoes sexual reproduction. International Journal for Parasitology 37, 9891000.CrossRefGoogle ScholarPubMed
Evans, H., Mello, L. V., Fang, Y., Wit, E., Thompson, F. J., Viney, M. E. and Paterson, S. (2008). Microarray analysis of gender- and parasite-specific gene transcription in Strongyloides ratti . International Journal for Parasitology 38, 13291341.CrossRefGoogle ScholarPubMed
Faust, E. C. (1933). Experimantal studies on human and primate species of Strongyloides. II. The development of Strongyloides in the experimental host. American Journal of Hyigene 18, 114132.Google Scholar
Fay, D. (2006). Genetic mapping and manipulation: Chapter 1-Introduction and basics. In WormBook (ed. The C. elegans Research Community), WormBook. doi: 10.1895/wormbook.1.90.1, http://www.wormbook.org.Google Scholar
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 391, 806811.CrossRefGoogle ScholarPubMed
Gehring, W. J., Affolter, M. and Burglin, T. (1994). Homeodomain proteins. Annual Review of Biochemistry 63, 487526.CrossRefGoogle ScholarPubMed
Gemmill, A. W., Viney, M. E. and Read, A. F. (1997). Host immune status determines sexuality in a parasitic nematode. Evolution: International Journal of Organic Evolution 51, 393401.CrossRefGoogle Scholar
Graham, G. L. (1936). Studies on Strongyloides. I. S. ratti in parasitic series, each generation in the rat established with a single homogonic larva. American Journal of Hygiene 24, 7187.Google Scholar
Graham, G. L. (1938). Studies on Strongyloides. II. Homogonic and heterogonic progeny of the single homogonically derived S. ratti parasite. American Journal of Hygiene 27, 221234.Google Scholar
Graham, G. L. (1939 a). Studies on Strongyloides. IV. Seasonal variation in the production of heterogonic progeny by singly established S. ratti from a homogonically derived line. American Journal of Hygiene 30, 1527.Google Scholar
Graham, G. L. (1939 b). Studies on Strongyloides. V. Constitutional differences between a homogonic and a heterogonic line of S. ratti . Journal of Parasitology 25, 365375.CrossRefGoogle Scholar
Graham, G. L. (1940 a). Studies on Strongyloides. VI. Comparison of two homogonic lines of singly established S. ratti . Journal of Parasitology 26, 207218.CrossRefGoogle Scholar
Graham, G. L. (1940 b). Studies on Strongyloides. VIII. Comparison of pure related lines of the nematode, Strongyloides ratti, including lines in which gigantism occurred. Journal of Experimental Zoology 84, 241260.CrossRefGoogle Scholar
Grant, W. N., Stasiuk, S., Newton-Howes, J., Ralston, M., Bisset, S. A., Heath, D. D. and Shoemaker, C. B. (2006). Parastrongyloides trichosuri, a nematode parasite of mammals that is uniquely suited to genetic analysis. International Journal for Parasitology 36, 453466.CrossRefGoogle ScholarPubMed
Guo, L., Chang, Z., Dieterich, C. and Streit, A. (2015). A protocol for chemical mutagenesis in Strongyloides ratti . Experimental Parasitology 158, 27.CrossRefGoogle ScholarPubMed
Hammond, M. P. and Robinson, R. D. (1994). Chromosome complement, gametogenesis, and development of Strongyloides stercoralis . Journal of Parasitology 80, 689695.CrossRefGoogle ScholarPubMed
Harvey, S. C. and Viney, M. E. (2001). Sex determination in the parasitic nematode Strongyloides ratti . Genetics 158, 15271533.CrossRefGoogle ScholarPubMed
Harvey, S. C., Gemmill, A. W., Read, A. F. and Viney, M. E. (2000). The control of morph development in the parasitic nematode Strongyloides ratti . Proceedings of the Royal Society of London B: Biological Sciences 267, 20572063.CrossRefGoogle ScholarPubMed
Hino, A., Tanaka, T., Takaishi, M., Fujii, Y., Palomares-Rius, J. E., Hasegawa, K., Maruyama, H. and Kikuchi, T. (2014). Karyotype and reproduction mode of the rodent parasite Strongyloides venezuelensis . Parasitology 141, 17361745.CrossRefGoogle ScholarPubMed
Hodgkin, J. (1999). Conventional genetics. In C. elegans a Practical Approach (ed. Hope, I. A.), pp. 245270. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hodgkin, J. (2005). Introduction to genetics and genomics. In WormBook (ed. The C. elegans Research Community), WormBook. doi: 10.1895/wormbook.1.17.1, http://www.wormbook.org.Google Scholar
Hu, M., Lok, J. B., Ranjit, N., Massey, H. C. Jr., Sternberg, P. W. and Gasser, R. B. (2010). Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). International Journal for Parasitology 15, 405415.CrossRefGoogle Scholar
Hunt, V. L., Tsai, I. J., Coghlan, A., Reid, A. J., Holroyd, N., Foth, B. J., Tracey, A., Cotton, J. A., Stanley, E. J., Beasley, H., Bennett, H., Brooks, K., Harsha, B., Kajitani, R., Kulkarni, A., Harbecke, D., Nagayasu, E., Nichol, S., Ogura, Y., Quail, M., Randle, N., Ribeiro, D., Sanchez-Flores, A., Hayashi, T., Itoh, T., Denver, D. R., Grant, W., Stoltzfus, J. D., Lok, J. B., Murayama, H., et al. (2016). The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes. Nature Genetics. in press. doi: 10.1038/ng.3495.CrossRefGoogle ScholarPubMed
Irion, U., Krauss, J. and Nüsslein-Volhard, C. (2014). Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 48274830.CrossRefGoogle ScholarPubMed
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816821.CrossRefGoogle ScholarPubMed
Kim, H. and Kim, J. S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics 15, 321334.CrossRefGoogle ScholarPubMed
Koboldt, D. C., Staisch, J., Thillainathan, B., Haines, K., Baird, S. E., Chamberlin, H. M., Haag, E. S., Miller, R. D. and Gupta, B. P. (2010). A toolkit for rapid gene mapping in the nematode Caenorhabditis briggsae . BMC Genomics 11, 236.CrossRefGoogle ScholarPubMed
Kreis, H. A. (1932). Studies on the genus Strongyloides (nematodes). American Journal of Hygiene 16, 450491.Google Scholar
Kulkarni, A., Dyka, A., Nemetschke, L., Grant, W. N. and Streit, A. (2013). Parastrongyloides trichosuri suggests that XX/XO sex determination is ancestral in Strongyloididae (Nematoda). Parasitology 140, 18221830.CrossRefGoogle ScholarPubMed
Kulkarni, A., Holz, A., Rödelsperger, C., Harbecke, D. and Streit, A. (2016). Differential chromatin amplification and chromosome complements in the germline of Strongyloididae (Nematoda). Chromosoma 125, 125136.CrossRefGoogle ScholarPubMed
Kutscher, L. M. and Shaham, S. (2014). Forward and reverse mutagenesis in C. elegans . In WormBook (ed. The C. elegans Research Community), WormBook. doi: 10.1895/wormbook.1.167.1, http://www.wormbook.org.Google Scholar
Lo, T. W., Pickle, C. S., Lin, S., Ralston, E. J., Gurling, M., Schartner, C. M., Bian, Q., Doudna, J. A. and Meyer, B. J. (2013). Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics 195, 331348.CrossRefGoogle ScholarPubMed
Lok, J. (2013). piggyBac: a vehicle for integrative DNA transformation of parasitic nematodes. Mobile Genetic Elements 3, e24417.CrossRefGoogle ScholarPubMed
Mackerras, M. J. (1959). Strongyloides and Parastrongyloides (Nematoda: Rhabdiasoidea) in Australian marsupials. Australian Journal of Zoology 7, 87104.CrossRefGoogle Scholar
Marcilla, A., Sotillo, J., Perez-Garcia, A., Igual-Adell, R., Valero, M. L., Sanchez-Pino, M. M., Bernal, D., Munoz-Antoli, C., Trelis, M., Toledo, R. and Esteban, J. G. (2010). Proteomic analysis of Strongyloides stercoralis L3 larvae. Parasitology 137, 15771583.CrossRefGoogle ScholarPubMed
Marcilla, A., Garg, G., Bernal, D., Ranganathan, S., Forment, J., Ortiz, J., Munoz-Antoli, C., Dominguez, M. V., Pedrola, L., Martinez-Blanch, J., Sotillo, J., Trelis, M., Toledo, R. and Esteban, J. G. (2012). The transcriptome analysis of Strongyloides stercoralis L3i larvae reveals targets for intervention in a neglected disease. PLoS Neglected Tropical Diseases 6, e1513.CrossRefGoogle Scholar
Massey, H. C., Castelletto, M. L., Bhopale, V. M., Schad, G. A. and Lok, J. B. (2005). Sst-tgh-1 from Strongyloides stercoralis encodes a proposed ortholog of daf-7 in Caenorhabditis elegans . Molecular and Biochemical Parasitology 142, 116120.CrossRefGoogle ScholarPubMed
Massey, H. C. Jr., Bhopale, M. K., Li, X., Castelletto, M. and Lok, J. B. (2006). The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans . International Journal for Parasitology 36, 347352.CrossRefGoogle ScholarPubMed
Massey, H. C. Jr., Ranjit, N., Stoltzfus, J. D. and Lok, J. B. (2013). Strongyloides stercoralis daf-2 encodes a divergent ortholog of Caenorhabditis elegans DAF-2. International Journal for Parasitology 43, 515520.CrossRefGoogle ScholarPubMed
Matoff, K. (1936). Beobachtungen über die larvale Entwicklung von Strongyloides papillosus (Wedl, 1856) und Infektionsversuche mit filariformen Larven. Parasitology Research 8, 474491.Google Scholar
McGinnis, W., Levine, M. S., Hafen, E., Kuroiwa, A. and Gehring, W. J. (1984). A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308, 428433.CrossRefGoogle ScholarPubMed
Minato, K., Kimura, E., Shintoku, Y. and Uga, S. (2008). Effect of temperature on the development of free-living stages of Strongyloides ratti . Parasitology Research 102, 315319.CrossRefGoogle ScholarPubMed
Moncol, D. J. and Triantaphyllou, A. C. (1978). Stronglyoides ransomi: factors influencing the in vitro development of the free-living generation. Journal of Parasitology 64, 220225.CrossRefGoogle ScholarPubMed
Motola, D. L., Cummins, C. L., Rottiers, V., Sharma, K. K., Li, T., Li, Y., Suino-Powell, K., Xu, H. E., Auchus, R. J., Antebi, A. and Mangelsdorf, D. J. (2006). Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans . Cell 124, 12091223.CrossRefGoogle ScholarPubMed
Nagayasu, E., Ogura, Y., Itoh, T., Yoshida, A., Chakraborty, G., Hayashi, T. and Maruyama, H. (2013). Transcriptomic analysis of four developmental stages of Strongyloides venezuelensis . Parasitology International 62, 5765.CrossRefGoogle ScholarPubMed
Nemetschke, L., Eberhardt, A. G., Hertzberg, H. and Streit, A. (2010 a). Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides . Current Biology 20, 16871696.CrossRefGoogle ScholarPubMed
Nemetschke, L., Eberhardt, A. G., Viney, M. E. and Streit, A. (2010 b). A genetic map of the animal-parasitic nematode Strongyloides ratti . Molecular and Biochemical Parasitology 169, 124127.CrossRefGoogle ScholarPubMed
Nigon, V. and Roman, E. (1952). Le déterminisme du sexe et le development cyclique de Strongyloides ratti . Bulletin Biologique de la France et de la Belgique 86, 404448.Google Scholar
Nolan, T. J., Brenes, M., Ashton, F. T., Zhu, X., Forbes, W. M., Boston, R. and Schad, G. A. (2004). The amphidial neuron pair ALD controls the temperature-sensitive choice of alternative developmental pathways in the parasitic nematode, Strongyloides stercoralis . Parasitology 129, 753759.CrossRefGoogle ScholarPubMed
Nwaorgu, O. C. (1983). The development of the free-living stages of Strongyloides papillosus. I. Effect of temperature on the development of the heterogonic and homogonic nematodes in faecal culture. Veterinary Parasitology 13, 213223.CrossRefGoogle ScholarPubMed
Ogawa, A., Streit, A., Antebi, A. and Sommer, R. J. (2009). A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Current Biology 19, 6771.CrossRefGoogle ScholarPubMed
O'Meara, H., Barber, R., Mello, L. V., Sangaralingam, A., Viney, M. E. and Paterson, S. (2010). Response of the Strongyloides ratti transcriptome to host immunological environment. International Journal for Parasitology 40, 16091617.CrossRefGoogle ScholarPubMed
Peeters, L., Janssen, T., De Haes, W., Beets, I., Meelkop, E., Grant, W. and Schoofs, L. (2011). A pharmacological study of NLP-12 neuropeptide signaling in free-living and parasitic nematodes. Peptides 34, 8287.CrossRefGoogle ScholarPubMed
Premvati (1958 a). Studies on Strongyloides of Primates II. Factors determining the “direct” and the “indirect” mode of life. Canadian Journal of Zoology 36, 185195.CrossRefGoogle Scholar
Premvati (1958 b). Studies on Strongyloides of Primates III. Observations on the free-living generations of S. fülleborni . Canadian Journal of Zoology 36, 447452.CrossRefGoogle Scholar
Ragsdale, E. J., Muller, M. R., Rodelsperger, C. and Sommer, R. J. (2013). A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155, 922933.CrossRefGoogle Scholar
Ramanathan, R., Varma, S., Ribeiro, J. M., Myers, T. G., Nolan, T. J., Abraham, D., Lok, J. B. and Nutman, T. B. (2011). Microarray-based analysis of differential gene expression between infective and noninfective larvae of Strongyloides stercoralis . PLoS Neglected Tropical Diseases 5, e1039.CrossRefGoogle ScholarPubMed
Sakamoto, M. and Uga, S. (2013). Development of free-living stages of Strongyloides ratti under different temperature conditions. Parasitology Research 112, 40094013.CrossRefGoogle ScholarPubMed
Sandground, J. H. (1926). Biological studies on the life-cycle in the genus Strongyloides Grassi, 1879. American Journal of Hygiene 6, 337388.Google Scholar
Sarin, S., Prabhu, S., O'Meara, M. M., Pe'er, I. and Hobert, O. (2008). Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nature Methods 5, 865867.CrossRefGoogle ScholarPubMed
Schad, G. A. (1989). Morphology and life history of Strongyloides stercoralis . In Strongyloidiasis: A Major Roundworm Infection of Man (ed. Grove, D. I.), pp. 85104. Taylor & Francis, London.Google Scholar
Schneuwly, S., Klemenz, R. and Gehring, W. J. (1987). Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature 325, 816818.CrossRefGoogle ScholarPubMed
Shao, H., Li, X., Nolan, T. J., Massey, H. C. Jr., Pearce, E. J. and Lok, J. B. (2012). Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines. PLoS Pathogens 8, e1002871.CrossRefGoogle ScholarPubMed
Soblik, H., Younis, A. E., Mitreva, M., Renard, B. Y., Kirchner, M., Geisinger, F., Steen, H. and Brattig, N. W. (2011). Life cycle stage-resolved proteomic analysis of the excretome/secretome from Strongyloides ratti – identification of stage-specific proteases. Molecular and Cellular Proteomics 10, M111 010157.CrossRefGoogle ScholarPubMed
Stasiuk, S. J., Scott, M. J. and Grant, W. N. (2012). Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri . EvoDevo 3, 1.CrossRefGoogle Scholar
Stoltzfus, J. D., Massey, H. C. Jr., Nolan, T. J., Griffith, S. D. and Lok, J. B. (2012 a). Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS ONE 7, e38587.CrossRefGoogle Scholar
Stoltzfus, J. D., Minot, S., Berriman, M., Nolan, T. J. and Lok, J. B. (2012 b). RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Neglected Tropical Diseases 6, e1854.CrossRefGoogle ScholarPubMed
Stoltzfus, J. D., Bart, S. M. and Lok, J. B. (2014). cGMP and NHR signaling co-regulate expression of insulin-like peptides and developmental activation of infective larvae in Strongyloides stercoralis . PLoS Pathogens 10, e1004235.CrossRefGoogle ScholarPubMed
Streit, A. (2008). Reproduction in Strongyloides (Nematoda): a life between sex and parthenogenesis. Parasitology 135, 285294.CrossRefGoogle ScholarPubMed
Streit, A. (2014). How to become a parasite without sex chromosomes: a hypothesis for the evolution of Strongyloides spp. and related nematodes. Parasitology 141, 12441254.CrossRefGoogle ScholarPubMed
Sung, Y. H., Kim, J. M., Kim, H. T., Lee, J., Jeon, J., Jin, Y., Choi, J. H., Ban, Y. H., Ha, S. J., Kim, C. H., Lee, H. W. and Kim, J. S. (2014). Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Research 24, 125131.CrossRefGoogle ScholarPubMed
Tazir, Y., Steisslinger, V., Soblik, H., Younis, A. E., Beckmann, S., Grevelding, C. G., Steen, H., Brattig, N. W. and Erttmann, K. D. (2009). Molecular and functional characterisation of the heat shock protein 10 of Strongyloides ratti . Molecular and Biochemical Parasitology 168, 149157.CrossRefGoogle ScholarPubMed
Thompson, F. J., Barker, G. L., Hughes, L. and Viney, M. E. (2008). Genes important in the parasitic life of the nematode Strongyloides ratti . Molecular and Biochemical Parasitology 158, 112119.CrossRefGoogle ScholarPubMed
Thompson, F. J., Barker, G. L., Nolan, T., Gems, D. and Viney, M. E. (2009). Transcript profiles of long- and short-lived adults implicate protein synthesis in evolved differences in ageing in the nematode Strongyloides ratti . Mechanisms of Ageing and Development 130, 167172.CrossRefGoogle ScholarPubMed
Triantaphyllou, A. C. and Moncol, D. J. (1977). Cytology, reproduction, and sex determination of Strongyloides ransomi and S. papillosus . Journal of Parasitology 63, 961973.CrossRefGoogle ScholarPubMed
Viney, M. (2014). The failure of genomics in biology. Trends in Parasitology 30, 319321.CrossRefGoogle ScholarPubMed
Viney, M. E. (1994). A genetic analysis of reproduction in Strongyloides ratti . Parasitology 109, 511515.CrossRefGoogle ScholarPubMed
Viney, M. E. (1996). Developmental switching in the parasitic nematode Strongyloides ratti . Proceedings of the Royal Society – Biological Sciences 263, 201208.Google ScholarPubMed
Viney, M. E. and Lok, J. B. (2015). The biology of Strongyloides spp. In WormBook (ed. The C. elegans Research Community), WormBook. doi: 10.1895/wormbook.1.141.1. http://www.wormbook.org.Google Scholar
Viney, M. E. and Thompson, F. J. (2008). Two hypotheses to explain why RNA interference does not work in animal parasitic nematodes. International Journal for Parasitology 38, 4347.CrossRefGoogle Scholar
Viney, M. E., Matthews, B. E. and Walliker, D. (1992). On the biological and biochemical nature of cloned populations of Strongyloides ratti . Journal of Helminthology 66, 4552.CrossRefGoogle ScholarPubMed
Viney, M. E., Matthews, B. E. and Walliker, D. (1993). Mating in the nematode parasite Strongyloides ratti: proof of genetic exchange. Proceedings of the Royal Society – Biological Sciences 254, 213219.Google ScholarPubMed
Viney, M. E., Green, L. D., Brooks, J. A. and Grant, W. N. (2002). Chemical mutagenesis of the parasitic nematode Strongyloides ratti to isolate ivermectin resistant mutants. International Journal for Parasitology 32, 16771682.CrossRefGoogle ScholarPubMed
Waaijers, S. and Boxem, M. (2014). Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Methods 68, 381388.CrossRefGoogle ScholarPubMed
Wang, Z., Zhou, X. E., Motola, D. L., Gao, X., Suino-Powell, K., Conneely, A., Ogata, C., Sharma, K. K., Auchus, R. J., Lok, J. B., Hawdon, J. M., Kliewer, S. A., Xu, H. E. and Mangelsdorf, D. J. (2009). Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America 106, 91389143.CrossRefGoogle ScholarPubMed
Wang, Z., Stoltzfus, J., You, Y. J., Ranjit, N., Tang, H., Xie, Y., Lok, J. B., Mangelsdorf, D. J. and Kliewer, S. A. (2015). The nuclear receptor DAF-12 regulates nutrient metabolism and reproductive growth in nematodes. PLoS Genetics 11, e1005027.CrossRefGoogle ScholarPubMed
Wei, Q., Shen, Y., Chen, X., Shifman, Y. and Ellis, R. E. (2014). Rapid creation of forward-genetics tools for C. briggsae using TALENs: lessons for nonmodel organisms. Molecular Biology and Evolution 31, 468473.CrossRefGoogle ScholarPubMed
Wiedenheft, B., Sternberg, S. H. and Doudna, J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331338.CrossRefGoogle ScholarPubMed
Witte, H., Moreno, E., Rodelsperger, C., Kim, J., Kim, J. S., Streit, A. and Sommer, R. J. (2015). Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus . Development Genes and Evolution 225, 5562.CrossRefGoogle ScholarPubMed
Yoshida, A., Nagayasu, E., Nishimaki, A., Sawaguchi, A., Yanagawa, S. and Maruyama, H. (2011). Transcripts analysis of infective larvae of an intestinal nematode, Strongyloides venezuelensis . Parasitology International 60, 7583.CrossRefGoogle ScholarPubMed
Younis, A. E., Geisinger, F., Ajonina-Ekoti, I., Soblik, H., Steen, H., Mitreva, M., Erttmann, K. D., Perbandt, M., Liebau, E. and Brattig, N. W. (2011). Stage-specific excretory/secretory small heat shock proteins from the parasitic nematode Strongyloides ratti: putative links to host's intestinal mucosal defense system. FEBS Journal 278, 33193336.CrossRefGoogle ScholarPubMed
Yuan, W., Liu, Y., Lok, J. B., Stoltzfus, J. D., Gasser, R. B., Lei, W., Fang, R., Zhao, J. and Hu, M. (2014 a). Exploring features and function of Ss-riok-3, an enigmatic kinase gene from Strongyloides stercoralis . Parasites and Vectors 7, 561.Google ScholarPubMed
Yuan, W., Lok, J. B., Stoltzfus, J. D., Gasser, R. B., Fang, F., Lei, W. Q., Fang, R., Zhou, Y. Q., Zhao, J. L. and Hu, M. (2014 b). Toward understanding the functional role of Ss-RIOK-1, a RIO protein kinase-encoding gene of Strongyloides stercoralis . PLoS Neglected Tropical Diseases 8, e3062.CrossRefGoogle ScholarPubMed
Zaffagnini, F. (1973). Parthenogenesis in the parasitic and free-living forms of Strongyloides papillosus (Nematoda, Rhabdiasoidea). Chromosoma 40, 443450.CrossRefGoogle ScholarPubMed
Zheng, M., Messerschmidt, D., Jungblut, B. and Sommer, R. J. (2005). Conservation and diversification of Wnt signaling function during the evolution of nematode vulva development. Nature Genetics 37, 300304.CrossRefGoogle ScholarPubMed