Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T22:38:41.023Z Has data issue: false hasContentIssue false

Follow-up of antibody avidity in BALB/c mice infected with Toxocara canis

Published online by Cambridge University Press:  16 April 2008

S. FENOY*
Affiliation:
Sección de Biología Animal y Parasitología, Facultad de Farmacia, Universidad San Pablo, Urbanización Montepríncipe, Crta. Boadilla del Monte Km 5300, 28668 Madrid, Spain
M. RODERO
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
E. PONS
Affiliation:
Sección de Biología Animal y Parasitología, Facultad de Farmacia, Universidad San Pablo, Urbanización Montepríncipe, Crta. Boadilla del Monte Km 5300, 28668 Madrid, Spain
C. AGUILA
Affiliation:
Sección de Biología Animal y Parasitología, Facultad de Farmacia, Universidad San Pablo, Urbanización Montepríncipe, Crta. Boadilla del Monte Km 5300, 28668 Madrid, Spain
C. CUÉLLAR
Affiliation:
Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
*
*Corresponding author: Sección de Biología Animal y Parasitología, Facultad de Farmacia, Universidad San Pablo, Urbanización Montepríncipe, Crta. Boadilla del Monte Km 5300, 28668 Madrid, Spain. Tel: +91 372 47 21. Fax: +91 351 04 96. E-mail: [email protected]

Summary

In human Toxocara canis infection, an association has been shown between high IgG avidity in the chronic phase and low IgG avidity in recently acquired toxocarosis. The evolution of the antibody response in terms of avidity has been carried out through a T. canis infection in BALB/c mice. Infection with T. canis embryonated eggs (EE) was carried out with single doses (SD) of 6, 12, 50, 100, 200 or 1000 EE/mouse and with multiple doses (MD) of 200 and 1000 EE. Specific antibodies against T. canis (IgM+G, IgG, IgG1 and IgM) were detected by ELISA and Western Blot (WB) techniques in the presence and absence of urea. With the ELISA method, an increase in the avidity index (AI) of around 50% was detected from days 40–80 p.i. to the end of the study, with all the doses studied. The WB method showed the presence of high avidity antibodies bound to 100 kDa and 75 kDa T. canis proteins in all the cases when the IgM+G and the IgG1 antibodies were investigated. Antibodies of variable avidity were observed in those sera that recognized the group of low molecular weight proteins, between 37 kDa and 25 kDa.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguila, C., Cuéllar, C., Fenoy, S. and Guillén, J. L. (1987). Comparative study of assays detecting circulating immune complexes and specific antibodies in patients infected with Toxocara canis. Journal of Helminthology 61, 196202.CrossRefGoogle ScholarPubMed
Anderson, A., Vetter, V., Kreuzer, L. and Bauer, G. (1994). Avidities of IgG directed against viral capsid antigen or early antigen: useful markers for significant Epstein-Barr serology. Journal of Medical Virology 43, 238244.CrossRefGoogle Scholar
Benitez del Castillo, J. M., Herreros, G., Guillen, J. L., Fenoy, S., Banares, A. and Garcia, J. (1995). Bilateral ocular toxocariasis demonstrated by aqueous humor enzyme-linked immunosorbent assay. American Journal of Ophthalmology 119, 514516.CrossRefGoogle ScholarPubMed
Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Cozon, G. J., Ferrandiz, J., Nebbi, H., Wallon, M. and Peyron, F. (1988). Estimation of the avidity of immunoglobulin G for routine diagnosis of chronic Toxoplasma gondii infection in pregnant women. European Journal of Clinical Microbiology and Infectious Diseases 17, 3236.Google Scholar
Cuellar, C., Fenoy, S., Aguila, C. and Guillen, J. L. (1986). Nuevos datos sobre la fotodependencia del desarrollo embrionario de Toxocara canis, Revista Ibérica de Parasitología 46, 409417.Google Scholar
de Savigny, H. (1975). In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. Journal of Parasitology 61, 781782.CrossRefGoogle Scholar
Elefant, G. R., Shimizu, S. H., Sanchez, M. C., Jacob, C. M. and Ferreira, A. W. (2006). A serological follow-up of toxocariasis patients after chemotherapy based on the detection of IgG, IgA, and IgE antibodies by enzyme-linked immunosorbent assay. Journal of Clinical Laboratory Analysis 20, 164172.CrossRefGoogle ScholarPubMed
Ferreira, M. U., Kimura, E. A., de Souza, J. M. and Katzin, A. M. (1996). The isotype composition and avidity of naturally acquired anti-Plasmodium falciparum antibodies: differential patterns in clinically immune Africans and Amazonian patients. American Journal of Tropical Medicine and Hygiene 55, 315323.CrossRefGoogle ScholarPubMed
Fenoy, S., Cuellar, C., Aguila, C. and Guillén, J. L. (1992). Persistence of immune response in human toxocariasis as measured by ELISA. International Journal for Parasitology 22, 10371038.CrossRefGoogle ScholarPubMed
Forstl, M., Buchta, V., Psohlavec, J., Cermak, P., Cermakova, Z., Urban, J. and Chrzova, M. (2004). Diagnostics of larval toxocariasis. Klinická mikrobiologie a infekcní lékarství 10, 181185.Google ScholarPubMed
Gass, J. D. and Braunstein, R. A. (1983). Further observations concerning the diffuse unilateral subacute neuroretinitis syndrome. Archives of Ophthalmology 101, 16891697.CrossRefGoogle ScholarPubMed
Gillespie, S. H., Dinning, W. J., Voller, A. and Crowcroft, N. S. (1993). The spectrum of ocular toxocariasis. Eye 7, 810.CrossRefGoogle ScholarPubMed
Guillén, J. L., Cuéllar, C. and Águila, C. (1986). Larva Migratoria Visceral: Estudio mediante ELISA de tres grupos familiares. Pediatrika 6, 2832.Google Scholar
Hedman, K., Lamppalainen, M. I., Seppälä, I. and Mäkela, O. (1989). Recent primary toxoplasma infection indicated by a low avidity of specific IgG. Journal of Infectious Diseases 159, 736740.CrossRefGoogle ScholarPubMed
Hedman, K. M., Lampalainen, M. I., Söderlund, M. and Hedman, L. (1993). Avidity of IgG in serodiagnosis of infectious diseases. Reviews in Medical Microbiology 4, 123129.CrossRefGoogle Scholar
Hubner, J., Uhlikova, M. and Leissova, M. (2001). Diagnosis of the early phase of larval toxocariasis using IgG avidity. Epidemiologie, Mikrobiologie, Imunologie: Casopis Spolecnosti pro Epidemiologii a Mikrobiologii Ceské Lékarské Spolecnosti J.E. Purkyne 50, 6770.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.Google Scholar
Lutz, E., Ward, K. N. and Gray, J. J. (1994). Maturation of antibody avidity after primary human cytomegalovirus infection is delayed in immunosuppressed solid organ transplant patients. Journal of Medical Virology 44, 317322.Google Scholar
Magnaval, J. F., Fabre, R., Maurieres, P., Charlet, J. P. and Larrard, B. (1991). Application of the western blotting procedure for the immunodiagnosis of human toxocariasis. Parasitology Research 77, 697702.Google Scholar
Magnaval, J. F., Glickman, L. T., Dorchies, P. and Morassin, B. (2001). Highlights of human toxocariasis. Korean Journal of Parasitology 39, 111.CrossRefGoogle ScholarPubMed
Marcipar, I. S., Risso, M. G., Silber, A. M., Revelli, S. and Marcipar, A. J. (2001). Antibody maturation in Trypanosoma cruzi-infected rats. Clinical and Diagnostic Laboratory Immunology 8, 802805.Google Scholar
Marcolino, P. T., Silva, D. A. O., Lesser, P. G., Camargo, M. E. and Mineo, J. R. (2000). Molecular markers in acute and chronic phases of human toxoplasmosis: determination of immunoglobulin G avidity by Western blotting. Clinical and Diagnostic Laboratory Immunology 7, 384389.CrossRefGoogle ScholarPubMed
Matsumura, K. and Endo, R. (1982). Enzyme-linked immunosorbent assay for toxocariasis, its application to the sera of children. International Journal of Microbiology and Hygiene 253, 402406.Google Scholar
Morales, O. L., Lopez, M. C., Nicholls, R. S. and Agudelo, C. (2002). Identification of Toxocara canis antigens by Western Blot in experimentally infected rabbits. Revista del Instituto de Medicina Tropical de Sao Paulo 44, 213216.Google Scholar
Nossal, G. J. V. (1992). The molecular and cellular basis of affinity maturation in the antibody response. Cell 68, 12.CrossRefGoogle ScholarPubMed
Overgaauw, P. A. (1997). Aspects of Toxocara epidemiology: human toxocarosis. Critical Reviews in Microbiology 3, 215231.CrossRefGoogle Scholar
Paul, M. (1999). Immunoglobulin G avidity in diagnosis of toxoplasmic lymphadenopathy and ocular toxoplasmosis. Clinical and Diagnostic Laboratory Immunology 6, 514518.Google Scholar
Perteguer, M. J., Cuéllar, C., Guillén, J. L., Águila, C., Fenoy, S., Chivato, T. F. and Laguna, R. (2003). Cross-reactivity between Anisakis simplex sensitisation and visceral larva migrans by Toxocara canis. Acta Tropica 89, 8589.CrossRefGoogle ScholarPubMed
Rychlicki, W. (2004). Use of specific immunoglobulin G antibody avidity in the differential diagnosis of active and chronic Toxocara canis infections. Wiadomości Parazytologiczne 50, 229236.Google ScholarPubMed
Sarimehmetoglu, H. O., Burgu, A., Aycicek, H., Gönenç, B., Tanyuksel, M. and Kara, M. (2002). Application of Western Blotting procedure for the immunodiagnosis of visceral larva migrans in mice by using excretory-secretory antigens. Deutsche tierärztliche Wochenschrift 108, 306400.Google Scholar
Sommerfelt, I. E., Santillan, G., Mira, G., Ribicich, M., Betti, A. and De Torres, R. (2006). Toxocara canis infections in a pig model: immunological, haematological and blood biochemistry responses. Journal of Helminthology 80, 7377.CrossRefGoogle Scholar
Sommerfelt, I. E., Santillán, G., Lopez, C., Ribich, M. and Franco, A. J. (2001). Immunological and hematological response in experimental Toxocara canis infected pigs. Veterinary Parasitology 96, 127134.CrossRefGoogle ScholarPubMed
Speiser, F. and Gottstein, B. A. (1984). A collaborative study on larval secretory-excretory antigens of Toxocara canis for the immunodiagnosis of human toxocariosis with ELISA. Acta Tropica 41, 361372.Google Scholar
Uhlikova, M., Hubner, J. and Leissova, M. (2002). The ocular form of larval toxocariasis in the Czech Republic. Ceská a Slovenská Oftalmologie:Casopis Ceské Oftalmologické Spolecnosti a Slovenské Oftalmologické Spolecnosti 58, 7583.Google ScholarPubMed