Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T05:49:49.071Z Has data issue: false hasContentIssue false

Flea infestation reduces the life span of the common vole

Published online by Cambridge University Press:  07 August 2009

G. DEVEVEY*
Affiliation:
Department of Ecology & Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia PA 19104, USA
P. CHRISTE
Affiliation:
Department of Ecology & Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
*
*Corresponding author: Department of Ecology & Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland. Tel: +1215 746 1732. Fax: +1215 898 8780. E-mail: [email protected]

Summary

Parasitism is often a source of variation in host's fitness components. Understanding and estimating its relative importance for fitness components of hosts is fundamental from physiological, ecological and evolutionary perspectives. Host-parasite studies have often reported parasite-induced reduction of host fecundity, whereas the effect of parasitism on host survival has been largely neglected. Here, we experimentally investigated the effect of infestation by rat fleas (Nosopsyllus fasciatus) on the life span of wild-derived male common voles (Microtus arvalis) bred in captivity. We found that the mean life span of parasitized voles was reduced by 36% compared to control voles. Parasitized voles had a smaller body size, but a relatively larger heart and spleen than control voles. These results indicate an effect of flea infestation on host life span and our findings strongly suggest that ectoparasites should be taken into account in the studies of host population dynamics.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. and May, R. M. (1978). Regulation and stability of host-parasite population interactions: I. Regulatory Processes. Journal of Animal Ecology 47, 219247.CrossRefGoogle Scholar
Brisson, D., Dykhuizen, D. E. and Ostfeld, R. S. (2008). Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proceedings of the Royal Society of London, B 275, 227235.Google ScholarPubMed
Brown, C. R., Brown, M. B. and Rannala, B. (1995). Ectoparasites reduce long-term survival of their avian host. Proceedings of the Royal Society of London, B 262, 313319.Google Scholar
Burthe, S., Telfer, S., Begon, M., Bennett, M., Smith, A. and Lambin, X. (2008). Cowpox virus infection in natural field vole Microtus agrestis populations: significant negative impacts on survival. Journal of Animal Ecology 77, 110119.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. (1988). Reproductive Success. University of Chicago Press, Chicago, Il, USA.Google Scholar
Christe, P., Keller, L. and Roulin, A. (2006). The predation cost of being a male: implications for sex-specific rates of ageing. Oikos 114, 381384.CrossRefGoogle Scholar
Deter, J., Charbonnel, N., Cosson, J.-F. and Morand, S. (2008). Regulation of vole populations by the nematode Trichuris arvicolae: insights from modelling. European Journal of Wildlife Research 54, 6070.CrossRefGoogle Scholar
Deter, J., Cosson, J.-F., Chaval, Y., Charbonnel, N. and Morand, S. (2007). The intestinal nematode Trichuris arvicolae affects the fecundity of its host, the common vole Microtus arvalis. Parasitological Research 101, 11611164.CrossRefGoogle ScholarPubMed
Devevey, G., Chapuisat, M. and Christe, P. (2009). Longevity differs among sexes but is not affected by repeated immune activation in voles (Microtus arvalis). Biological Journal of the Linnean Society 97, 328333.CrossRefGoogle Scholar
Devevey, G., Niculita-Hirzel, H., Biollaz, F., Yvon, C., Chapuisat, M. and Christe, P. (2008). Developmental, metabolic and immunological cost of flea infestation in the common vole. Functional Ecology 22, 10911098.CrossRefGoogle Scholar
Dobson, A. P. and Hudson, P. J. (1992). Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in Red Grouse. II. Population Models. Journal of Animal Ecology 61, 487498.CrossRefGoogle Scholar
Garcia, E. S., Ratcliffe, N. A., Whitten, M. M. A., Gonzalez, M. S. and Azambuja, P. (2007). Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. Journal of Insect Physiology 53, 1121.CrossRefGoogle ScholarPubMed
Goüy de Bellocq, J., Krasnov, B. R., Khokhlova, I. S., Ghazaryan, L. and Pinshow, B. (2006). Immunocompetence and flea parasitism of a desert rodent. Functional Ecology 20, 637646.CrossRefGoogle Scholar
Hawlena, H., Krasnov, B. R., Abramsky, Z., Khokhlova, I. S., Saltz, D., Kam, M., Tamir, A. and Degen, A. A. (2006 a). Flea infestation and energy requirements of rodent hosts: are there general rules? Functional Ecology 20, 10281036.CrossRefGoogle Scholar
Hawlena, H., Abramsky, Z. and Krasnov, B. R. (2006 b). Ectoparasites and age-dependent survival in a desert rodent. Oecologia 148, 3039.CrossRefGoogle Scholar
Hudson, P. J., Dobson, A. P. and Newborn, D. (1998). Prevention of population cycles by parasite removal. Science 282, 22562258.CrossRefGoogle ScholarPubMed
Hudson, P. J., Newborn, D. and Dobson, A. P. (1992). Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in Red Grouse. I. Monitoring and parasite reduction experiments. Journal of Animal Ecology 61, 477486.CrossRefGoogle Scholar
Jacob, J. (2003). Body weight dynamics of common voles in agro-ecosystems. Mammalia 67, 559566.CrossRefGoogle Scholar
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457481.CrossRefGoogle Scholar
Khokhlova, I. S., Krasnov, B. R., Kam, M., Burdelova, N. I. and Degen, A. A. (2002). Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. Journal of Zoology 258, 349354.CrossRefGoogle Scholar
Medvedev, S. G. and Krasnov, B. R. (2006). Fleas: permanent satellites of small mammals. In Micromammals and Macroparasites. From Evolutionary Ecology to Management (ed. Morand, S., Krasnov, B. R. and Poulin, R.), pp. 161177. Springer-Verlag, Tokyo, Japan.CrossRefGoogle Scholar
Møller, A. P. (1997). Parasitism and the evolution of host life history. In Host-Parasite Evolution, General Principles and Avian Models (ed. Clayton, D. H. and Moore, J.), pp. 105127. Oxford University Press, New York, USA.CrossRefGoogle Scholar
Møller, A. P., Christe, P., Erritzoe, J. and Mavarez, J. (1998). Disease and immune defence. Oikos 83, 301306.CrossRefGoogle Scholar
Neuhaus, P. (2003). Parasite removal and its impact on litter size and body condition in Columbian ground squirrels (Spermophilus columbianus). Proceedings of the Royal Society of London, B 270, S213S215.CrossRefGoogle ScholarPubMed
Petorelli, N. and Durant, S. M. (2007). Longevity in cheetahs: the key to success? Oikos 116, 18761886.CrossRefGoogle Scholar
Pipano, E. (2003). Recent developments in the control of ectoparasites and endoparasites of dogs and cats with selamectin. Israel Journal of Veterinary Medicine 58, 23.Google Scholar
Ribble, D. O. (1992). Lifetime reproductive success and its correlates in the monogamous rodent Peromyscus californicus. Journal of Animal Ecology 61, 457468.CrossRefGoogle Scholar
Saino, N., Calza, S. and Møller, A. P. (1998). Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, Hirundo rustica, nestlings. Oikos 81, 217228.CrossRefGoogle Scholar
Schmoll, T., Schurr, F. M., Winkel, W., Epplen, J. T. and Lubjuhn, T. (2009). Lifespan, lifetime reproductive performance and extra-pair paternity loss of within-pair and extra-pair offspring in the coal tit Periparus ater. Proceedings of the Royal Society of London, B 276, 337345.Google ScholarPubMed
Sorci, G, and Faivre, B. (2009). Inflammation and oxidative stress in vertebrate host-parasite systems. Philosophical Transactions of the Royal Society 364, 7183.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1992). The Evolution of Life Histories. Oxford University Press, Oxford, UK.Google Scholar
Townsend, S. E., Newey, S., Thirgood, S. J., Matthews, L. and Haydon, D. T. (2009). Can parasites drive population cycles in mountain hares? Proceedings of the Royal Society of London, B 276, 16111617.Google ScholarPubMed
van de Pol, M. and Verhulst, S. (2006). Age-dependent traits: a new statistical model to separate within- and between-individual effects. American Naturalist 167, 766773.CrossRefGoogle ScholarPubMed
Watkins, R. A., Moshier, S. E., O'dell, W. D. and Pinter, A. J. (1991). Splenomegaly and reticulocytosis caused by Babesia microti infections in natural populations of the Montane Vole, Microtus montanus. Journal of Protozoology 38, 573576.CrossRefGoogle ScholarPubMed
Wauters, L. A. and Dhondt, A. A. (1995). Lifetime reprodiuctive success and its correlates in female eurasian red squirrels. Oikos 72, 402410.CrossRefGoogle Scholar
Weladji, R. B., Gaillard, J.-M., Yoccoz, N. G., Holand, O., Mysterud, A., Loison, A., Nieminen, M. and Stenseth, N. C. (2006). Good reindeer mothers live longer and become better in raising offspring. Proceedings of the Royal Society of London, B 273, 12391244.Google ScholarPubMed