Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T22:30:38.611Z Has data issue: false hasContentIssue false

Factors generating aggregation of Heligmosomoides polygyrus (Nematoda) in laboratory mice

Published online by Cambridge University Press:  06 April 2009

G. V. Tanguay
Affiliation:
Institute of Parasitology, Macdonald Campus, McGill University, 211 111 Lakeshore Road, Ste-Anne de Bellevue, Quebec H9X 1CO, Canada
M. E. Scott
Affiliation:
Institute of Parasitology, Macdonald Campus, McGill University, 211 111 Lakeshore Road, Ste-Anne de Bellevue, Quebec H9X 1CO, Canada

Extract

The importance of host heterogeneity in generating aggregation was investigated using Heligmosomoides polygyrus (Nematoda) in laboratory mice. Parameters of infection were compared between inbred and outbred mice, between primary and challenge infection protocols, and between gavage and natural exposure protocols, to investigate the relative effects of innate resistance, acquired resistance and behaviour, respectively. Heterogeneity in acquired resistance was identified as the most consistent factor leading to variability and aggregation of H. polygyrus numbers in mice. This hypothesis was supported in two experiments where groups of mice did not develop resistance to challenge infection (use of certain inbred strains of mice and immunosuppression with corticosteroids in the drinking water) and where variability in worm numbers after the challenge infection was comparable with that after the primary infection. Heterogeneity in host behaviour, particularly in behaviours enhancing skin contact with larvae, also was associated with increased heterogeneity in worm burden, though not as consistently as heterogeneity in acquired resistance. Surprisingly, worm burdens were not more variable in outbred compared with inbred mice. Our data suggest that the relative contributions of innate resistance, acquired resistance and behaviour in generating variable worm burdens are likely to vary spatially and temporally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, D. B. (1988). The effect of dexamethasone on a single and a superimposed infection with Haemonchus contortus in sheep. International Journal for Parasitology 18, 575–9.CrossRefGoogle Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M. & Medley, G. F. (1985). Community control of helminth infections of man by mass and selective chemotherapy. Parasitology 90, 629–60.CrossRefGoogle Scholar
Behnke, J. M. & Robinson, M. (1985). Genetic control of immunity to Nematospiroides dubius: a 9-day anthelmintic abbreviated immunizing regime which separates weak and strong responder strains of mice. Parasite Immunology 7, 235–53.CrossRefGoogle ScholarPubMed
Behnke, J. M. & Wakelin, D. (1977). Nematospiroides dubius: stimulation of acquired immunity in inbred strains of mice. Journal of Helminthology 51, 167–76.CrossRefGoogle ScholarPubMed
Bovet, D., Bovet-Nitti, F. & Oliverio, A. (1969). Genetic aspects of learning and memory in mice. Science 163, 139–49.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye. Analytical Biochemistry 72, 248–54.CrossRefGoogle ScholarPubMed
Burren, C. H. (1980). A method for obtaining large numbers of clean infective larvae of Nematospiroides dubius. Zeitschrift für Parasitenkunde 62, 111–12.CrossRefGoogle ScholarPubMed
Cypess, R. H. & Zidian, J. L. (1975). Heligmosomoides polygyrus (= Nematospiroides dubius): the development of self-cure and/or protection in several strains of mice. Journal of Parasitology 61, 819–24.CrossRefGoogle ScholarPubMed
David, F. N. & Moore, P. G. (1954). Notes on contagious distributions in plant populations. Annals of Botany 18, 4753.CrossRefGoogle Scholar
Ehrenford, F. A. (1954). The life-cycle of Nematospiroides dubius Baylis (Nematoda: Heligmosomoidae). Journal of Parasitology 40, 480–1.CrossRefGoogle Scholar
Enriquez, F. J., Cypess, R. H. & Wassom, D. L. (1988 a). Influence of immunizing dose and presence or absence of adult worms on the development of resistance to Nematospiroides dubius challenge infections of mice. Journal of Parasitology 74, 409–14.CrossRefGoogle ScholarPubMed
Enriquez, F. J., Brooks, B. O., Cypess, R. H., David, C. S. & Wassom, D. L. (1988 b). Nematospiroides dubius: two H-2 linked genes influence levels of resistance to infection in mice. Experimental Parasitology 67, 221–6.CrossRefGoogle ScholarPubMed
Enriquez, F. J., Zidian, J. L. & Cypess, R. H. (1988 c). Nematospiroides dubius: genetic control of immunity to infections of mice.Experimental Parasitology 67, 1219.CrossRefGoogle ScholarPubMed
Ey, P. L., Prowse, S. J. & Jenkin, C. R. (1981). Heligmosomoides polygyrus: simple recovery of post-infective larvae from mouse intestines. Experimental Parasitology 52, 6976.CrossRefGoogle ScholarPubMed
Festing, M. F. W. (1985). Strategy in the use of inbred strains. In Genetic Control of Host Resistance to Infection and Malignancy (ed. Skamene, E.), pp. 1929. New York: Alan R. Liss, Inc.Google Scholar
Festing, M. F. W. & Lovell, D. P. (1981). Domestication and development of the mouse as a laboratory animal. In Biology of the House Mouse (ed. Berry, R. J.), pp. 4362. London: Academic Press.Google Scholar
Goldfien, A. (1984). Adrenocorticosteroids and adrenocortical antagonists. In Basic and Clinical Pharmacology, 2nd Edn, (ed. Katzung, B. G.), pp. 453–65. Los Altos, California: Lange Medical Publication.Google Scholar
Gregory, R. D., Keymer, A. E. & Clarke, J. R. (1990). Genetics, sex and exposure: the ecology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology 59, 363–78.CrossRefGoogle Scholar
Kerboeuf, D. (1978). The effects of time and temperature of storage on the infectivity of the third-stage larvae of Heligmosomoides polygyrus (= Nematospiroides dubius). 2. Studies on the fecundity of female worms as a function of the infectivity of the third-stage larvae. Annales de Recherche Veterinaire 9, 161–8.Google ScholarPubMed
Keymer, A. E. (1985). Experimental epidemiology:Nematospiroides dubius and the laboratory mouse. In Ecology and Genetics of Host–Parasite Interactions, (ed. Rollinson, D. & Anderson, R. M.), pp. 5575. London: Academic Press.Google Scholar
Keymer, A. E. & Anderson, R. M. (1979). The dynamics of infection of Tribolium confusum by Hymenolepis diminuta: the influence of the infective-stage density and spatial distribution. Parasitology 79, 195207.CrossRefGoogle ScholarPubMed
Keymer, A. E. & Dobson, A. P. (1987). The ecology of helminths in populations of small mammals. Mammal Review 17, 105–16.CrossRefGoogle Scholar
Keymer, A. E. & Hiorns, R. W. (1986). Heligmosomoides polygyrus: the dynamics of primary and repeated infection in outbred mice. Proceedings of the Royal Society of London, B 229, 4767.Google ScholarPubMed
Lewis, J. W. (1968). Studies on the helminth parasites of the long-tailed field mouse, Apodemus sylvaticus from Wales. Journal of Zoology 154, 287312.CrossRefGoogle Scholar
Lueker, D. C. & Hepler, D. I. (1975). Differences in immunity to Nematospiroides dubius in inbred and outbred mice. Journal of Parasitology 61, 158–9.CrossRefGoogle ScholarPubMed
Lueker, D. C., Rubin, R. & Andersen, S. (1968). Protection of mice against Nematospiroides dubius by subcutaneously administered larval vaccines. Journal of Parasitology 54, 1237–8.CrossRefGoogle ScholarPubMed
Matthews, D., Brunsdon, R. V. & Vlassoff, A. (1979). Effect of dexamethasone on the ability of sheep to resist reinfection with nematodes. Veterinary Parasitology 5, 6572.CrossRefGoogle Scholar
May, R. M. & Anderson, R. M. (1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249–68.CrossRefGoogle Scholar
Oliverio, A. (1983). Genes and behaviour: an evolutionary perspective. Advances in the Study of Behaviour 13, 191217.CrossRefGoogle Scholar
Presson, B. L., Gray, G. D. & Burgess, S. K. (1988). The effect of immunosuppression with dexamethasone on Haemonchus contortus infections in genetically resistant Merion sheep. Parasite Immunology 10, 675–80.CrossRefGoogle Scholar
Prowse, S. J., Mitchell, G. F., Ey, P. L. & Jenkin, C. R. (1979). The development of resistance in different inbred strains of mice to infection with Nematospiroides dubius. Parasite Immunology 1, 277–88.CrossRefGoogle ScholarPubMed
Rothwell, T. L. W., Le Jambre, L. F., Adams, D. B. & Love, R. J. (1978). Trichostrongylus colubriformis infection of guinea pigs: genetic basis for variation in susceptibility to infection among outbred animals. Parasitology 76, 201–9.CrossRefGoogle ScholarPubMed
Rubin, R., Lueker, D. C., Flom, J. O. & Anderson, S. (1971). Immunity against Nematospiroides dubius in CFW Swiss Webster mice protected by subcutaneous larval vaccination. Journal of Parasitology 57, 815–17.CrossRefGoogle ScholarPubMed
Salomon, S. E. (1984). Drugs and the immune system. In Basic and Clinical Pharmacology, 2nd Edn, (ed. Katzung, B. G.), pp. 712–28. Los Altos, California: Lange Medical Publication.Google Scholar
Schad, G. A. & Anderson, R. M. (1985). Predisposition to hookworm infection in humans. Science 228, 1537–40.CrossRefGoogle ScholarPubMed
Scott, M. E. (1987). Regulation of mouse colony abundance by Heligmosomoides polygyrus. Parasitology 95, 111–24.CrossRefGoogle ScholarPubMed
Scott, M. E. (1988). Effect of repeated anthelmintic treatment on ability to detect predisposition of mice to Heligmosomoides polygyrus and Aspiculuris tetraptera (Nematoda) infections. Parasitology 97, 453–8.CrossRefGoogle ScholarPubMed
Scott, M. E. (1991). Heligmosomoides polygyrus (Nematoda): susceptible and resistant strains of mice are indistinguishable following natural infection. Parasitology 103, 429–38.CrossRefGoogle ScholarPubMed
Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.Google Scholar
Sitepu, P. & Dobson, C. (1982). Genetic control of resistance to infection with Nematospiroides dubius in mice: selection of high and low immune responder populations of mice. Parasitology 85, 7384.CrossRefGoogle ScholarPubMed
Slater, A. F. G. & Keymer, A. E. (1986). Epidemiology of Heligmosomoides polygyrus in mice: experiments on natural transmission. Parasitology 93, 177–87.CrossRefGoogle ScholarPubMed
Southwood, T. R. E. (1978). Ecological Methods. Cambridge: Cambridge University Press.Google Scholar
Staats, J. (1985). Standardized nomenclature for inbred strains of mice: eighth listing. Cancer Research 45, 945–77.Google ScholarPubMed
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics. New York: McGraw-Hill.Google Scholar
Tanguay, G. V. (1989). Experimental investigation of factors generating aggregation of parasite populations usingHeligmosomoides polygyrus (Nematoda) in laboratory mice. Ph.D. thesis, Institute of Parasitology, McGill University.Google Scholar
Tanguay, G. V. & Scott, M. E. (1987). A technique for determining Heligmosomoides polygyrus (Nematoda) worm burden following anthelmintic treatment in mice. Journal of Parasitology 73, 843–4.CrossRefGoogle ScholarPubMed
Tanner, C. E., Curtis, M. A., Sole, T. D. & Gyapay, K. (1980). The nonrandom, negative binomial distribution of experimental trichinellosis in rabbits. Journal of Parasitology 66, 802–5.CrossRefGoogle ScholarPubMed
Van Oortmerssen, G. A. (1971). Biological significance, genetics and evolutionary origin of variability in behaviour within and between inbred strains of mice (Mus musculus). Behaviour 38, 198.CrossRefGoogle ScholarPubMed
Wakelin, D. (1975). Genetic control of immune responses to parasites: immunity to Trichuris muris in inbred and random-bred strains of mice. Parasitology 71, 5160.CrossRefGoogle ScholarPubMed
Wakelin, D. (1985). Genetic control of immunity to helminth infections. Parasitology Today 1, 1723.CrossRefGoogle ScholarPubMed
Wassom, D. L. (1985). Genetic control of the host response to parasitic helminth infections. In Genetic Control of Host Resistance to Infection and Malignancy. (ed. Skamene, E.), pp. 449–58. New York: Alan R. Liss, Inc.Google Scholar