Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T14:40:22.075Z Has data issue: false hasContentIssue false

Factors affecting the adhesion of micro-organisms to the surfaces of plant-parasitic nematodes

Published online by Cambridge University Press:  06 April 2009

A. F. Bird
Affiliation:
CSIRO, Division of Soils, Private Bag No. 2, P.O. Glen Osmond, AU5064
Ingrid Bonig
Affiliation:
Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3052
A. Bacic
Affiliation:
Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria 3052

Summary

The influence of various agents on the adhesion of endospores of Pasteuria penetrans to the nematode Meloidogyne javanica was studied. Similarly, but to a lesser degree, we have also studied the adhesion of conidia of the fungus Dilophospora alopecuri and the coryneform bacterium Clavibacter sp. (syn. Corynebacterium rathayi) to the nematode Anguina agrostis (syn. A. funesta). Reduction in the degree of both spore and conidial attachment following their pre-treatment with periodate and the presence of PAS staining material on spores, conidia and bacteria implicated carbohydrate in these interactions. Tests involving both unbound and FITC-bound lectins demonstrated that wheat germ agglutinin (WGA) can inhibit the degree of attachment of P. penetrans to M. javanica and that this inhibition can be overcome by pre-treatment of the lectin with N, N′-diacetyl chitobiose. Endospores of P. penetrans, amphid and buccal secretions of 2nd-stage larvae of M. javanica and the cuticle and excretory pore secretions of 2nd-stage dauer larvae of A. agrostis bound WGA, indicating that accessible N-acetyl-D-glucosamine residues are present on these structures. Endospores of P. penetrans also bound Con A, indicating the presence of accessible α-D-glucose/α-D-mannose residues on their surface.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, A. F. (1984). Nematoda. In Biology of the Integument vol. 1, Invertebrates (ed. J., Bareiter-Hahn, Matolsty, A. G. and Richards, K. S.), pp. 212–33.CrossRefGoogle Scholar
Bird, A. F. (1985). The nature of the adhesion of Corynebacterium rathayi to the cuticle of the infective larva of Anguina agrostis. International Journal for Parasitology 15, 301–8.CrossRefGoogle Scholar
Bird, A. F. & McKay, A. C. (1987). Adhesion of conidia of the fungus Dilophospora alopecuri to the cuticle of the nematode Anguina agrostis, the vector in annual ryegrass toxicity. International Journal for Parasitology 17, 1239–47.CrossRefGoogle Scholar
Bird, A. F. & Riddle, D. L. (1984). Effect of attachment of Corynebacterium rathayi on movement of Anguina agrostis larvae. International Journal for Parasitology 14, 503–11.CrossRefGoogle Scholar
Jansson, H.-B., Jeyaprakash, A., Coles, G. C., Marban-Mendoza, N. & Zuckerman, B. M. (1986). Fluorescent and ferritin labelling of cuticle surface carbohydrates of Caenorhabditis elegans and Panagrellus redivivus. Journal of Nematology 18, 570–4.Google ScholarPubMed
Kennedy, M. W., Foley, M., Kuo, Y.-M., Kusel, J. R. & Garland, P. G. (1987). Biophysical properties of the surface lipid of parasitic nematodes. Molecular and Biochemical Parasitology 22, 233–40.CrossRefGoogle ScholarPubMed
Luft, J. H. (1971). Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanisms of action. Anatomical Record 171, 347–68.CrossRefGoogle Scholar
McClure, M. A. & Zuckerman, B. M. (1982). Localization of cuticular binding sites of Concanavalin A on Caenorhabditis elegans and Meloidogyne incognita. Journal of Nematology 14, 3944.Google ScholarPubMed
Murrell, K. D. & Graham, C. (1982). Solubilization studies on the epicuticular antigens of Strongyloides ratti. Veterinary Parasitology 10, 191203.CrossRefGoogle ScholarPubMed
Murrell, K. D., Graham, C. & McGreevy, M. (1983). Strongyloides ratti and Trichinella spiralis: net charge of epicuticle. Experimental Parasitology 55, 331–9.CrossRefGoogle ScholarPubMed
Nordbring-Hertz, B. & Mattiasson, B. (1979). Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature, London 281, 477–9.CrossRefGoogle Scholar
Perry, R. N. & Trett, M. W. (1986). Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie 9, 399403.Google Scholar
Rosenzweig, W. D., Premachandran, D. & Pramer, D. (1985). Role of trap lectins in the specificity of nematode capture by fungi. Canadian Journal of Microbiology 31, 693–5.CrossRefGoogle Scholar
Sayre, R. M. & Starr, M. P. (1985). Pasteuria penetrans (ex Thorne, 1940) nom.rev., comb.n., sp.n., a mycelial and endospore-forming bacterium of plant parasitic nematodes. Proceedings of the Helminthological Society of Washington 52, 149–65.Google Scholar
Stirling, G. R., Bird, A. F. & Cakurs, A. B. (1986). Attachment of Pasteuria penetrans spores to the cuticles of root-knot nematodes. Revue de Nématologie 9, 251–60.Google Scholar
Zuckerman, B. M., Kahane, I. & Himmelhoch, S. (1979). Caenorhabditis briggsae and C. elegans: partial characterization of cuticle surface carbohydrates. Experimental Parasitology 47, 419–24.CrossRefGoogle Scholar