Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T12:57:20.214Z Has data issue: false hasContentIssue false

Exploring the interface between diagnostics and maps of neglected parasitic diseases

Published online by Cambridge University Press:  28 March 2014

LAURA RINALDI*
Affiliation:
Section of Parasitology, Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
GIUSEPPE CRINGOLI
Affiliation:
Section of Parasitology, Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
*
*Corresponding author: Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Della Veterinaria 1, 80137 Napoli, Italy. E-mail: [email protected]

Summary

Although not new, the ‘One Health’ concept is gaining progressively more importance in parasitology. Now more than ever, veterinary and human perspectives should be closely joined in diagnosis and surveillance of neglected parasitic diseases. We argue that concerted, standardized and harmonized diagnostic and surveillance strategies are needed for the control and/or elimination of animal and human neglected parasitic infections. A key challenge is to integrate parasitological data with available geospatial methods in an accessible and user-friendly framework. We discuss the capability of new diagnostic devices (e.g. Mini-FLOTAC) and geospatial technologies supported by mobile- and electronic-based approaches as one of the research priorities of the new millennium.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albonico, M., Rinaldi, L., Sciascia, S., Morgoglione, M. E., Piemonte, M., Maurelli, M. P., Musella, V., Utzinger, J., Ali, S. M., Ame, S. M. and Cringoli, G. (2013). Comparison of three copromicroscopic methods to assess albendazole efficacy against soil-transmitted helminth infections in school-aged children on Pemba Island. Transactions of the Royal Society of Tropical Medicine and Hygiene 107, 493501.CrossRefGoogle ScholarPubMed
Banoo, S., Bell, D., Bossuyt, P., Herring, A., Mabey, D., Poole, F., Smith, P. G., Sriram, N., Wongsrichanalai, C., Linke, R., O'Brien, R., Perkins, M., Cunningham, J., Matsoso, P., Nathanson, C. M., Olliaro, P., Peeling, R. W., Ramsay, A. and TDR Diagnostics Evaluation Expert Panel (2010). Evaluation of diagnostic tests for infectious diseases: general principles. Nature Reviews Microbiology 8, S17S29.Google Scholar
Barda, B., Ianniello, D., Salvo, F., Sadutshang, T., Rinaldi, L., Cringoli, G., Burioni, R. and Albonico, M. (2013 a). “Freezing” parasites in pre-Himalayan region, Himachal Pradesh: experience with mini-FLOTAC. Acta Tropica 130C, 1116.Google Scholar
Barda, B. D., Rinaldi, L., Ianniello, D., Zepherine, H., Salvo, F., Sadutshang, T., Cringoli, G., Clementi, M. and Albonico, M. (2013 b). Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Neglected Tropical Diseases 7, e2344.Google Scholar
Barda, B., Zepherine, H., Rinaldi, L., Cringoli, G., Burioni, R., Clementi, M. and Albonico, M. (2013 c). Mini-FLOTAC and Kato-Katz: helminth eggs watching on the shore of Lake Victoria. Parasites and Vectors 31, e2344.Google Scholar
Beaumier, C. M., Gillespie, P. M., Hotez, P. J. and Bottazzi, M. E. (2013). New vaccines for neglected parasitic diseases and dengue. Translational Research 162, 144155.Google Scholar
Becker, S. L., Vogt, J., Knopp, S., Panning, M., Warhurst, D. C., Polman, K., Marti, H., von Müller, L., Yansouni, C. P., Jacobs, J., Bottieau, E., Sacko, M., Rijal, S., Meyanti, F., Miles, M. A., Boelaert, M., Lutumba, P., van Lieshout, L., N'Goran, E. K., Chappuis, F. and Utzinger, J. (2013). Persistent digestive disorders in the tropics: causative infectious pathogens and reference diagnostic tests. BMC Infectious Diseases 24, 37.Google Scholar
Bergquist, R. and Tanner, M. (2012). Visual approaches for strengthening research, science communication and public health impact. Geospatial Health 6, 155156.CrossRefGoogle ScholarPubMed
Bethony, J., Brooker, S., Albonico, M., Geiger, S. M., Loukas, A., Diemert, D. and Hotez, P. J. (2006). Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 15211532.Google Scholar
Boatin, B. A., Basáñez, M. G., Prichard, R. K., Awadzi, K., Barakat, R. M., García, H. H., Gazzinelli, A., Grant, W. N., McCarthy, J. S., N'Goran, E. K., Osei-Atweneboana, M. Y., Sripa, B., Yang, G. J. and Lustigman, S. (2012). A research agenda for helminth diseases of humans: towards control and elimination. PLoS Neglected Tropical Diseases 6, e1547.Google Scholar
Bogoch, I. I., Andrews, J. R., Speich, B., Utzinger, J., Ame, S. M., Ali, S. M. and Keiser, J. (2013). Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study. American Journal of Tropical Medicine and Hygiene 88, 626629.Google Scholar
Catelan, D., Rinaldi, L., Musella, V., Cringoli, G. and Biggeri, A. (2012). Statistical approaches for farm and parasitic risk profiling in geographical veterinary epidemiology. Statistical Methods for Medical Research 21, 531543.CrossRefGoogle ScholarPubMed
Chammartin, F., Scholte, R. G., Guimarães, L. H., Tanner, M., Utzinger, J. and Vounatsou, P. (2013). Soil-transmitted helminth infection in South America: a systematic review and geostatistical meta-analysis. Lancet Infectious Diseases 13, 507518.Google Scholar
Clements, A. C., Reid, H. L., Kelly, G. C. and Hay, S. I. (2013). Further shrinking the malaria map: how can geospatial science help to achieve malaria elimination? Lancet Infectious Diseases 13, 709718.Google Scholar
Cringoli, G., Rinaldi, L., Maurelli, M. P. and Utzinger, J. (2010). FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopic diagnosis of parasites in animals and humans. Nature Protocols 5, 503515.CrossRefGoogle ScholarPubMed
Cringoli, G., Rinaldi, L., Albonico, M., Bergquist, R. and Utzinger, J. (2013). Geospatial (s)tools: integration of advanced epidemiological sampling and novel diagnostics. Geospatial Health 7, 399404.Google Scholar
Day, M. J. (2011). One health: the importance of companion animal vector-borne diseases. Parasite Vectors 4, 49.CrossRefGoogle ScholarPubMed
Demeler, J., Ramünke, S., Wolken, S., Ianiello, D., Rinaldi, L., Gahutu, J. B., Cringoli, G., von Samson-Himmelstjerna, G. and Krücken, J. (2013). Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR. PLoS One 19, e61285.Google Scholar
Duncombe, J., Clements, A., Hu, W., Weinstein, P., Ritchie, S. and Espino, F. E. (2012). Geographical information systems for dengue surveillance. American Journal of Tropical Medicine and Hygiene 86, 753755.Google Scholar
Gaafar, M. R. (2011). Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites. Journal of Clinical Laboratory Analysis 25, 217222.CrossRefGoogle ScholarPubMed
Glinz, D., Silué, K. D., Knopp, S., Lohourignon, L. K., Yao, K. P., Steinmann, P., Rinaldi, L., Cringoli, G., N'Goran, E. K. and Utzinger, J. (2010). Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Neglected Tropical Diseases 20, e754.Google Scholar
Gualdieri, L., Rinaldi, L., Petrullo, L., Morgoglione, M. E., Maurelli, M. P., Musella, V., Piemonte, M., Caravano, L., Coppola, M. G. and Cringoli, G. (2011). Intestinal parasites in immigrants in the city of Naples (southern Italy). Acta Tropica 117, 196201.CrossRefGoogle ScholarPubMed
Kienberger, S., Hagenlocher, M., Delmelle, E. and Casas, I. (2013). A WebGIS tool for visualizing and exploring socioeconomic vulnerability to dengue fever in Cali, Colombia. Geospatial Health 8, 313316.Google Scholar
Knopp, S., Rinaldi, L., Khamis, I. S., Stothard, J. R., Rollinson, D., Maurelli, M. P., Steinmann, P., Marti, H., Cringoli, G. and Utzinger, J. (2009). A single FLOTAC is more sensitive than triplicate Kato-Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 347354.Google Scholar
Knopp, S., Speich, B., Hattendorf, J., Rinaldi, L., Mohammed, K. A., Khamis, I. S., Mohammed, A. S., Albonico, M., Rollinson, D., Marti, H., Cringoli, G. and Utzinger, J. (2011). Diagnostic accuracy of Kato-Katz and FLOTAC for assessing anthelmintic drug efficacy. PLoS Neglected Tropical Diseases 12, e1036.Google Scholar
Levecke, B., Rinaldi, L., Charlier, J., Maurelli, M. P., Morgoglione, M. E., Vercruysse, J. and Cringoli, G. (2011). Monitoring drug efficacy against gastrointestinal nematodes when faecal egg counts are low: do the analytic sensitivity and the formula matter? Parasitology Research 109, 953957.CrossRefGoogle ScholarPubMed
Levecke, B., Rinaldi, L., Charlier, J., Maurelli, M. P., Bosco, A., Vercruysse, J. and Cringoli, G. (2012). The bias, accuracy and precision of faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods. Veterinary Parasitology 188, 194199.Google Scholar
Magalhães, R. J., Clements, A. C., Patil, A. P., Gething, P. W. and Brooker, S. (2011). The applications of model-based geostatistics in helminth epidemiology and control. Advances in Parasitology 74, 267296.CrossRefGoogle ScholarPubMed
Malone, J. B. and Bergquist, N. R. (2012). Mapping and modelling neglected tropical diseases and poverty in Latin America and the Caribbean. Geospatial Health 6, S1S5.CrossRefGoogle ScholarPubMed
Mekonnen, Z., Meka, S., Ayana, M., Bogers, J., Vercruysse, J. and Levecke, B. (2013). Comparison of individual and pooled stool samples for the assessment of soil-transmitted helminth infection intensity and drug efficacy. PLoS Neglected Tropical Diseases 16, e2189.Google Scholar
Morgan, E. R., Cavill, L., Curry, G. E., Wood, R. M. and Mitchell, E. S. (2005). Effects of aggregation and sample size on composite faecal egg counts in sheep. Veterinary Parasitology 131, 7987.Google Scholar
Morgan, E. R., Charlier, J., Hendrickx, G., Biggeri, A., Catelan, D., von Samson-Himmelstjerna, G., Demeler, J., Müller, E., van Dijk, J., Kenyon, F., Skuce, P., Höglund, J., O'Kiely, P., van Ranst, B., de Waal, T., Rinaldi, L., Cringoli, G., Hertzberg, H., Torgerson, P., Wolstenholme, A. and Vercruysse, J. (2013). Global change and helminth infections in grazing ruminants in Europe: impacts, trends and sustainable solutions. Agriculture 3, 484502.CrossRefGoogle Scholar
Rinaldi, L., Coles, G. C., Maurelli, M. P., Musella, V. and Cringoli, G. (2011). Calibration and diagnostic accuracy of simple flotation, McMaster and FLOTAC for parasite egg counts in sheep. Veterinary Parasitology 177, 345352.Google Scholar
Rinaldi, L., Levecke, B., Bosco, A., Ianello, D., Pepe, P., Charlier, J., Cringoli, G. and Vercruysse, J. (2014). Comparison of individual and pooled faecal samples in sheep for the assessment of gastro-intestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-Flotac. Veterinary Parasitology (in press).Google Scholar
Roeber, F., Jex, A. R. and Gasser, R. B. (2013). Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: a turning point? Advances in Parasitology 83, 267333.Google Scholar
Scholte, R. G. C., Schur, N., Bavia, M. E., Carvalho, E. M., Chammartin, F., Utzinger, J. and Vounatsou, P. (2013). Spatial analysis and risk mapping of soil-transmitted helminth infections in Brazil, using Bayesian geostatistical models. Geospatial Health 8, 97110.Google Scholar
Solomon, A. W., Engels, D., Bailey, R. L., Blake, I. M., Brooker, S., Chen, J. X., Chen, J. H., Churcher, T. S., Drakeley, C. J., Edwards, T., Fenwick, A., French, M., Gabrielli, A. F., Grassly, N. C., Harding-Esch, E. M., Holland, M. J., Koukounari, A., Lammie, P. J., Leslie, J., Mabey, D. C., Rhajaoui, M., Secor, W. E., Stothard, J. R., Wei, H., Willingham, A. L., Zhou, X. N. and Peeling, R. W. (2012). A diagnostics platform for the integrated mapping, monitoring, and surveillance of neglected tropical diseases: rationale and target product profiles. PLoS Neglected Tropical Diseases 6, e1746.CrossRefGoogle ScholarPubMed
Stothard, J. R., Kabatereine, N. B., Tukahebwa, E. M., Kazibwe, F., Mathieson, W., Webster, J. P. and Fenwick, A. (2005). Field evaluation of the Meade Readiview handheld microscope for diagnosis of intestinal schistosomiasis in Ugandan school children. American Journal of Tropical Medicine and Hygiene 73, 949955.Google Scholar
Utzinger, J., Rinaldi, L., Lohourignon, L. K., Rohner, F., Zimmermann, M. B., Tschannen, A. B., N'goran, E. K. and Cringoli, G. (2008). FLOTAC: a new sensitive technique for the diagnosis of hookworm infections in humans. Transactions of the Royal Society of Tropical Medicine and Hygiene 102, 8490.Google Scholar
Utzinger, J., Rinaldi, L., Malone, J. B., Krauth, S. J., Kristensen, T. K., Cringoli, G. and Bergquist, R. (2011). Geospatial health: the first five years. Geospatial Health 6, 137154.CrossRefGoogle ScholarPubMed
Utzinger, J., Becker, S. L., Knopp, S., Blum, J., Neumayr, A. L., Keiser, J. and Hatz, C. F. (2012). Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Medical Weekly 142, w13727.Google Scholar
Zhou, X. N. (2012). Prioritizing research for “One health – One world”. Infectious Diseases of Poverty 1, 1.Google Scholar
Zhou, X. N., Bergquist, R. and Tanner, M. (2013). Elimination of tropical disease through surveillance and response. Infectious Diseases of Poverty 3, 1.Google Scholar