Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:51:29.424Z Has data issue: false hasContentIssue false

Experimental assessment of the effects of gastrointestinal parasites on offspring quality in chinstrap penguins (Pygoscelis antarctica)

Published online by Cambridge University Press:  06 February 2012

M. J. PALACIOS
Affiliation:
Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n. 04120, La Cañada de San Urbano, Almería, Spain
F. VALERA
Affiliation:
Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n. 04120, La Cañada de San Urbano, Almería, Spain
A. BARBOSA*
Affiliation:
Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n. 04120, La Cañada de San Urbano, Almería, Spain Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2. 28006 Madrid, Spain
*
*Corresponding author: Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2. 28006 Madrid, Spain. Tel: +34 914111328. Fax: +34 915645078. E-mail: [email protected]

Summary

Parasites reduce host fitness and consequently impose strong selection pressures on their hosts. It has been hypothesized that parasites are scarcer and their overall effect on hosts is weaker at higher latitudes. Although Antarctic birds have relatively low numbers of parasites, their effect on host fitness has rarely been investigated. The effect of helminth parasitism on growth rate was experimentally studied in chinstrap penguin (Pygoscelis antarctica) nestlings. In a total of 22 two-nestling broods, 1 nestling was treated with anthelminthics (for cestodes and nematodes) while its sibling was left as a control. Increased growth rate was predicted in de-wormed nestlings compared to their siblings. As expected, 15 days after treatment, the experimental nestlings had increased body mass more than their siblings. These results show a non-negligible negative effect of helminth parasites on nestling body condition that would presumably affect future survival and thus fitness, and it has been suggested there is a strong relationship between body mass and mortality in chinstrap penguins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbosa, A. and Palacios, M. J. (2009). Health of Antarctic birds: a review of their parasites, pathogens and diseases. Polar Biology 32, 10951115.CrossRefGoogle ScholarPubMed
Barbosa, A., Benzal, J., Vidal, V., D'Amico, V., Coria, N., Diaz, J., Motas, M., Palacios, M. J., Cuervo, J. J., Ortiz, J. and Chitimia, L. (2011). Seabird tick (Ixodes uriae) distribution along the Antarctic Peninsula. Polar Biology 71, 453470.Google Scholar
Bouslama, Z., Lambrechts, M. M., Ziane, N., Djenidi, R. and Chabi, Y. (2002). The effect of nest ectoparasites on parental provisioning in a north-African population of the Blue Tit Parus caeruleus. Ibis 144, E73E78.CrossRefGoogle Scholar
Clayton, D. H. and Moore, J. (1997). Host-Parasite Evolution: General Principles and Avian Models. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Cuesta, A., Esteban, M. A. and Meseguer, J. (2002). Levamisole is a potent enhancer of gilthead seabream natural cytoxic activity. Veterinary Immunology and Immunopathology 89, 169174.CrossRefGoogle Scholar
Cuesta, A., Meseguer, J. and Esteban, M. A. (2004). Total serum immunoglobulin M are afected by immunomodulators in sea bream (Sparus aurata). Veterinary Immunology and Immunopathology 89, 169174.CrossRefGoogle Scholar
De Lope, F., Møller, A. P. and De La Cruz, C. (1998). Parasitism, immune response and reproductive success in the house martin Delichon urbica. Oecologia 114, 188193.CrossRefGoogle Scholar
Deerenberg, C., Arpanius, V., Daan, S. and Bos, N. (1997). Reproductive effort decreases antibody responsiveness. Proceedings of the Royal Society of London, B 264, 10211029.CrossRefGoogle Scholar
Delahay, R. J., Speakman, J. R. and Moss, R. (1994). The energetic consequences of parasitism: effects of a developing infection of Trichostrongylus tenuis (Nematoda) on red grouse (Lagopus lagopus scoticus) energy balance, body weight and condition. Parasitology 110, 473482.CrossRefGoogle Scholar
Dobson, A. P. (1988). The population biology of parasite-induced changes in host behavior. Quarter Review Biology 63, 139165.CrossRefGoogle ScholarPubMed
Dobson, A. P. and Hudson, P. J. (1995). The interaction between the parasites and predators of red grouse Lagopus Lagopus Scoticus. Ibis 137, S87S96.CrossRefGoogle Scholar
El Kholy, H. and Kemppainen, B. W. (2005). Levamisole residues in chicken tissues and eggs. Poultry Science 84, 913.CrossRefGoogle ScholarPubMed
Forbes, A. B., Huckle, C. A., Gibb, M. J., Rook, A. J. and Nuthall, R. (2000). Evaluation of the effects of nematode parasitism on grazing behaviour, herbage intake and growth in young grazing cattle. Veterinary Parasitology 90, 111118.CrossRefGoogle ScholarPubMed
Garnett, M. C. (1981). Body size, its heritability and influence on juvenile survival among great tits, Parus major. Ibis 123, 3141.CrossRefGoogle Scholar
Greenman, C. G., Martin, L. B. II and Hau, M. (2005). Reproductive state, but not testosterone, reduces immune function in male house sparrows (Passer domesticus). Physiology and Biochemical Zoology 78, 6068.CrossRefGoogle Scholar
Hanssen, S. A., Folstad, I., Erikstad, K. E. and Oksanen, A. (2003). Costs of parasites in common eiders: effects of antiparasite treatment. Oikos 100, 105111.CrossRefGoogle Scholar
Hochachka, W. and Smith, J. N. M. (1991). Determinants and consequences of nestling condition in Song Sparrows. Journal of Animal Ecology 60, 9951008.CrossRefGoogle Scholar
Holmes, P. H. (1987). Pathophysiology of nematode infections. International Journal for Parasitology 17, 443451.CrossRefGoogle ScholarPubMed
Hudson, P. J., Dobson, A. P. and Newborn, D. (1992). Do parasites make prey vulnerable to predation? Red grouse and parasites. Journal of Animal Ecology 61, 681692.CrossRefGoogle Scholar
Jog, M. and Watve, M. (2005). Role of parasites and commensals in shaping host behaviour. Current Science 89, 11841191.Google Scholar
Jones, A., Bailey, T. A., Nicholls, P. K., Samour, J. H. and Naldo, J. (1996). Cestode and acanthocephalan infections in captive bustards: New host and location records, with data on pathology, control, and preventive medicine. Journal of Zoo Wildlilfe Medicine 27, 201208.Google Scholar
Kerry, K. R. and Riddle, M. J. (2009). Health of Antarctic Wildlife. A Challenge for Science and Policy. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
Lair, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963974.CrossRefGoogle Scholar
Langston, N. and Hillgarth, N. (1995). Molt varies with parasites in laysan albatrosses. Proceedings of the Royal Society of London, B 261, 239243.Google Scholar
Lehmann, T. (1993). Ectoparasites: Direct impact on host fitness. Parasitology Today 9, 813.CrossRefGoogle ScholarPubMed
Lishman, G. S. (1985). The comparative breeding biology of adelie and chinstrap penguins Pygoscelis adeliae and Pygoscelis antarctica at Signy Island, South Orkney Islands. Ibis 127, 8499.CrossRefGoogle Scholar
Lochmiller, R. L. and Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 8798.CrossRefGoogle Scholar
Loye, J. E. and Carrol, S. P. (1991). Nest ectoparasite abundance and cliffs swallow colony site selection, nesting development and departure time. In Bird-Parasite Interactions: Ecology, Evolution and Behaviour (ed. Loye, J. E. and Zuk, M.), pp. 222241. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Loye, J. E. and Zuk, M. (1991). Bird-Parasite Interactions. Ecology, Evolution and Behaviour. Oxford University Press, Oxford, UK.Google Scholar
MacRae, J. C. (1993). Metabolic consequences of intestinal parasitism. Proceedings of the Nutrition Society 52, 121130.CrossRefGoogle ScholarPubMed
Magrath, R. D. (1991). Nestling weight and juvenile survival in the Blackbird, Turdus merula. Journal of Animal Ecology 60, 335351.CrossRefGoogle Scholar
Martinez-Padilla, J., Mougeot, F., Perez-Rodriguez, L. and Bortolotti, G. R. (2007). Nematode parasites reduce carotenoid-based signalling in male red grouse. Biology Letters 3, 161164.CrossRefGoogle ScholarPubMed
Merino, S., Barbosa, A., Moreno, J. and Potti, J. (1997). Absence of haematozoa in a wild chinstrap penguin Pygoscelis antárctica population. Polar Biology 18, 227228.CrossRefGoogle Scholar
Moore, J. (2002). Parasites and the Behaviour of Animals. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Moreno, J., Barbosa, A., de Leon, A. and Fargallo, J. A. (1999). Phenotypic selection on morphology at independence in the chinstrap penguin Pygoscelis antarctica. Journal of Evolutionary Biology 12, 507513.CrossRefGoogle Scholar
Moreno, J., Carrascal, L. M., Sanz, J. J., Amat, J. A. and Cuervo, J. J. (1994). Hatching asynchrony, sibling hierarchies and brood reduction in the chinstrap penguin Pygoscelis antarctica. Polar Biology 14, 2130.CrossRefGoogle Scholar
Mougeot, F., Martinez-Padilla, J., Blount, J. D., Perez-Rodriguez, L., Webster, L. M. I. and Piertney, S. B. (2010). Oxidative stress and the effect of parasites on a carotenoid-based ornament. Journal of Experimental Biology 213, 400407.CrossRefGoogle ScholarPubMed
Møller, A. P. (1997). Parasites and the evolution of host life history. In Host-Parasite Evolution: General Principles and Avian Models (ed. Clayton, D. and Moore, J.), pp. 105127. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Møller, A. P. and Saino, N. (2004). Immune response and survival. Oikos 104, 299304.CrossRefGoogle Scholar
Mulero, V., Esteban, M. A., Muñoz, J. and Meseguer, J. (1998). Dietary intake of Levamisole enhances the immune response and disease resistance of the marine teleost gilthead seabream Sparus aurata. Fish Shellfish Immunology 8, 4962.CrossRefGoogle Scholar
Murray, D. L., Cary, J. R. and Keith, L. B. (1997). Interactive effects of sub-lethal nematodes and nutritional status on snowshoe hare vulnerability to predation. Journal of Animal Ecology 66, 250264.CrossRefGoogle Scholar
Newborn, D. and Foster, R. (2002). Control of parasite burdens in wild red grouse Lagopus lagopus scoticus through the indirect application of anthelmintics. Journal of Applied Ecology 39, 909914.CrossRefGoogle Scholar
Nilsson, J. A. (2003). Ectoparasitism in marsh tits: costs and functional explanations. Behavioral Ecology 14, 175181.CrossRefGoogle Scholar
Nur, N. (1984). The consequences of brood size for breeding blue tits. II. Nestling weight, offspring survival, and optimal brood size. Journal of Animal Ecology 53, 497517.CrossRefGoogle Scholar
Packer, C., Holt, R. D., Hudson, P. J., Lafferty, K. D. and Dobson, A. P. (2003). Keeping the herds healthy and alert: Implications of predator control for infectious disease. Ecology Letters 6, 797802.CrossRefGoogle Scholar
Perrins, C. M. (1965). Population fluctuations and clutch-size in the great tit, Parus major L. Journal of Animal Ecology 34, 601647.CrossRefGoogle Scholar
Price, P. W. (1980). Evolutionary Ecology of Parasites. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
Rojas, A. and Montero, A. (1982). Efecto de tiabendazol y levamisol sobre los parásitos gastrointestinales y ganancia de peso en corderos barbados. Agronomía Costarricense 6, 6164.Google Scholar
Schaller, G. B. (1972). The Serengeti lion: A study of predator-prey relations. University of Chicago Press, Chicago, Illinois, USA.Google Scholar
Sheldon, B. C. and Verhulst, S. (1996). Ecological immunology: Costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11, 317321.CrossRefGoogle ScholarPubMed
Svensson, E., Raberg, L., Koch, C. and Hasselquist, D. (1998). Energetic stress, immunosuppression and the costs of an antibody response. Functional Ecology 12, 912919.CrossRefGoogle Scholar
Thomas, H. and Gonnert, R. (1977). Efficacy of praziquantel against cestodes in animals. Parasitology Research 52, 117127.Google ScholarPubMed
Viñuela, J., Moreno, J., Carrascal, L. M., Sanz, J. J., Amat, J. A., Ferrer, M., Belliure, J. and Cuervo, J. J. (1996). The effect of hatching date on parental care, chick growth, and chick mortality in the chinstrap penguin Pygoscelis antarctica. Journal of Zoology 240, 5158.CrossRefGoogle Scholar
Warrelius, K. H. (1993). The effect of intestinal helminths on body condition of prelaying eiders Somateria mollisima. Ph.D, dissertation, University of Tromsø, Norway.Google Scholar
Williams, T. D. (1995). The Penguins. Oxford University Press, Oxford, UK.Google Scholar
Wilson, D. (2009). Causes and benefits of chick aggregations in penguins. Auk 126, 688693.CrossRefGoogle Scholar