Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T17:28:03.990Z Has data issue: false hasContentIssue false

Evolutionary conservation of actin-binding proteins in Trypanosoma cruzi and unusual subcellular localization of the actin homologue

Published online by Cambridge University Press:  14 May 2008

L. D. B. DE MELO
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil Departamento de Biotecnologia, Centro Federal de Educação Tecnológica de Química, Rua Senador Furtado, 121 CEP: 20270-021, Rio de Janeiro, RJ, Brazil
C. SANT'ANNA
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
S. A. REIS
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
D. LOURENÇO
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
W. DE SOUZA
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
U. G. LOPES
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
N. L. CUNHA-E-SILVA*
Affiliation:
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
*
*Corresponding author: Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco G – Cidade Universitária, Ilha do Fundão, CEP: 21941-902, Rio de Janeiro, RJ, Brazil. Tel: +55 21 2562 6593. Fax: +55 21 2260 2364. E-mail: [email protected]

Summary

The actin cytoskeleton controls pivotal cellular processes such as motility and cytokinesis, as well as cell-cell and cell-substrate interactions. Assembly and spatial organization of actin filaments are dynamic events regulated by a large repertoire of actin-binding proteins. This report presents the first detailed characterization of the Trypanosoma cruzi actin (TcActin). Protein sequence analysis and homology modelling revealed that the overall structure of T. cruzi actin is conserved and that the majority of amino-acid changes are concentrated on the monomer surface. Immunofluorescence assays using specific polyclonal antibody against TcActin revealed numerous rounded and punctated structures spread all over the parasitic body. No pattern differences could be found between epimastigotes and trypomastigotes or amastigotes. Moreover, in detergent extracts, TcActin was localized only in the soluble fraction, indicating its presence in the G-actin form or in short filaments dissociated from the microtubule cytoskeleton. The trypanosomatid genome was prospected to identify actin-binding and actin-related conserved proteins. The main proteins responsible for actin nucleation and treadmilling in higher eukaryotes are conserved in T. cruzi.

Type
Original Articles
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiyar, A. (2000). The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods in Molecular Biology 132, 221241.Google ScholarPubMed
Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195201. doi:10.1093/bioinformatics/bti770CrossRefGoogle ScholarPubMed
Balcer, H. I., Goodman, A. L., Rodal, A. A., Smith, E., Kugler, J., Heuser, J. E. and Goode, B. L. (2003). Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Current Biology 13, 21592169. doi:10.1016/j.cub.2003.11.051CrossRefGoogle ScholarPubMed
Baum, J., Papenfuss, A. T., Baum, B., Speed, T. P. and Cowman, A. F. (2006). Regulation of apicomplexan actin-based motility. Nature Reviews Microbiology 4, 621628. doi:10.1038/nrmicro1465CrossRefGoogle ScholarPubMed
Bogitsh, B. J., Ribeiro-Rodrigues, R. and Carter, C. E. (1995). In vitro effects of mannan and cytochalasin B on the uptake of horseradish peroxidase and [14C] sucrose by Trypanosoma cruzi epimastigotes. Journal of Parasitology 81, 144148.CrossRefGoogle ScholarPubMed
Broadhead, R., Dawe, H. R., Farr, H., Griffiths, S., Hart, S. R., Portman, N., Shaw, M. K., Ginger, M. L., Gaskell, S. J., McKean, P. G. and Gull, K. (2006). Flagellar motility is required for the viability of the bloodstream trypanosome. Nature, London 440, 224227.CrossRefGoogle ScholarPubMed
Camargo, E. P. (1964). Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina Tropical de Sao Paulo 12, 93100.Google Scholar
Carlier, M. F. (1998). Control of actin dynamics. Current Opinion in Cell Biology 10, 4551. doi:10.1016/S0955-0674(98)80085-9Google Scholar
Cevallos, A. M., Lopez-Villasenor, I., Espinosa, N., Herrera, J. and Hernandez, R. (2003). Trypanosoma cruzi: allelic comparisons of the actin genes and analysis of their transcripts. Experimental Parasitology 103, 2734. doi:10.1016/S0014-4894(03)00066-3CrossRefGoogle ScholarPubMed
Corrêa, J. R., Atella, G. C., Batista, M. M. and Soares, M. J. (2008). Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol, but not by obstruction of clathrin-dependent endocytosis. Experimental Parasitology 119, 5866. doi:10.1016/j.exppara.2007.12.010CrossRefGoogle Scholar
Cvrckova, F., Rivero, F. and Bavlnka, B. (2004). Evolutionarily conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants. Protoplasma 224, 1531.CrossRefGoogle ScholarPubMed
De Melo, L. D., Nepomuceno-Silva, J. L., Sant'Anna, C., Eisele, N., Ferraro, R. B., Meyer-Fernandes, J. R., de Souza, W., Cunha-e-Silva, N. L. and Lopes, U. G. (2004). TcRho1 of Trypanosoma cruzi: role in metacyclogenesis and cellular localization. Biochemical and Biophysical Research Communications 323, 10091016. doi:10.1016/j.bbrc.2004.08.197CrossRefGoogle ScholarPubMed
De Melo, L. D., Eisele, N., Nepomuceno-Silva, J. L. and Lopes, U. G. (2006). TcRho1, the Trypanosoma cruzi Rho homologue, regulates cell-adhesion properties: evidence for a conserved function. Biochemical and Biophysical Research Communications 345, 617622. doi:10.1016/j.bbrc.2006.04.075CrossRefGoogle ScholarPubMed
De Sá-Freire, A., Nepomuceno-Silva, J. L., da Paixão, J. C., de Mendonça, S. M., de Melo, L. D. and Lopes, U. G. (2003). TcArf1: a Trypanosoma cruzi ADP-ribosylation factor. Parasitology Research 91, 166170. doi:10.1007/s00436-003-0952-0CrossRefGoogle ScholarPubMed
De Souza, W., Meza, I., Martinez-Palomo, A., Sabanero, M., Souto-Padron, T. and Meirelles, M. N. (1983). Trypanosoma cruzi: distribution of fluorescently labeled tubulin and actin in epimastigotes. Journal of Parasitology 69, 138142.CrossRefGoogle ScholarPubMed
De Souza, W. (2002). Basic cell biology of Trypanosoma cruzi. Current Pharma Design 8, 269285. doi:10.2174/1381612023396276Google Scholar
Disanza, A., Steffen, A., Hertzog, M., Frittoli, E., Rottner, K. and Scita, G. (2005). Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cellular and Molecular Life Science 62, 955970. doi:10.1007/s00018-004-4472-6CrossRefGoogle ScholarPubMed
El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran, A. N., Ghedin, E., Worthey, E. A., Delcher, A. L., Blandin, G., Westenberger, S. J., Caler, E., Cerqueira, G. C., Branche, C., Haas, B., Anupama, A., Arner, E., Aslund, L., Attipoe, P., Bontempi, E., Bringaud, F., Burton, P., Cadag, E., Campbell, D. A., Carrington, M., Crabtree, J., Darban, H., da Silveira, J. F., de Jong, P., Edwards, K., Englund, P. T., Fazelina, G., Feldblyum, T., Ferella, M., Frasch, A. C., Gull, K., Horn, D., Hou, L., Huang, Y., Kindlund, E., Klingbeil, M., Kluge, S., Koo, H., Lacerda, D., Levin, M. J., Lorenzi, H., Louie, T., Machado, C. R., McCulloch, R., McKenna, A., Mizuno, Y., Mottram, J. C., Nelson, S., Ochaya, S., Osoegawa, K., Pai, G., Parsons, M., Pentony, M., Pettersson, U., Pop, M., Ramirez, J. L., Rinta, J., Robertson, L., Salzberg, S. L., Sanchez, D. O., Seyler, A., Sharma, R., Shetty, J., Simpson, A. J., Sisk, E., Tammi, M. T., Tarleton, R., Teixeira, S., Van Aken, S., Vogt, C., Ward, P. N., Wickstead, B., Wortman, J., White, O., Fraser, C. M., Stuart, K. D. and Andersson, B. (2005 a). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409415. doi:10.1126/science.1112631CrossRefGoogle ScholarPubMed
El-Sayed, N. M., Myler, P. J., Blandin, G., Berriman, M., Crabtree, J., Aggarwal, G., Caler, E., Renauld, H., Worthey, E. A., Hertz-Fowler, C., Ghedin, E., Peacock, C., Bartholomeu, D. C., Haas, B. J., Tran, A. N., Wortman, J. R., Alsmark, U. C., Angiuoli, S., Anupama, A., Badger, J., Bringaud, F., Cadag, E., Carlton, J. M., Cerqueira, G. C., Creasy, T., Delcher, A. L., Djikeng, A., Embley, T. M., Hauser, C., Ivens, A. C., Kummerfeld, S. K., Pereira-Leal, J. B., Nilsson, D., Peterson, J., Salzberg, S. L., Shallom, J., Silva, J. C., Sundaram, J., Westenberger, S., White, O., Melville, S. E., Donelson, J. E., Andersson, B., Stuart, K. D. and Hall, N. (2005 b). Comparative genomics of trypanosomatid parasitic protozoa. Science 309, 404409. doi:10.1126/science.1112181Google Scholar
Evangelista, M., Zigmond, S. and Boone, C. (2003). Formins: signaling effectors for assembly and polarization of actin filaments. Journal of Cell Science 116, 26032611. doi:10.1242/jcs.00611CrossRefGoogle ScholarPubMed
Garcia-Salcedo, J. A., Perez-Morga, D., Gijon, P., Dilbeck, V., Pays, E. and Nolan, D. P. (2004). A differential role for actin during the life cycle of Trypanosoma brucei. EMBO Journal 23, 780789. doi:10.1038/sj.emboj.7600094.CrossRefGoogle ScholarPubMed
Gull, K. (1999). The cytoskeleton of trypanosomatid parasites. Annual Review of Microbiology 53, 629655. doi:10.1146/annurev.micro.53.1.629CrossRefGoogle ScholarPubMed
Huang, T. Y., DerMardirossian, C. and Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Current Opinion in Cell Biology 18, 2631. doi:10.1016/j.ceb.2005.11.005CrossRefGoogle ScholarPubMed
Kim, K., Galletta, B. J., Schmidt, K. O., Chang, F. S., Blumer, K. J. and Cooper, J. A. (2006). Actin-based motility during endocytosis in budding yeast. Molecular Biology of the Cell 17, 13541363. doi:10.1091/mbc.E05-10-0925CrossRefGoogle ScholarPubMed
Lanzetti, L., Di Fiore, P. P. and Scita, G. (2001). Pathways linking endocytosis and actin cytoskeleton in mammalian cells. Experimental Cell Research 271, 4556. doi:10.1006/excr.2001.5369CrossRefGoogle ScholarPubMed
Mortara, R. A. (1989). Studies on trypanosomatid actin. I. Immunochemical and biochemical identification. Journal of Protozoology 36, 813.CrossRefGoogle ScholarPubMed
Nayak, R. C., Sahasrabuddhe, A. A., Bajpai, V. K. and Gupta, C. M. (2005). A novel homologue of coronin colocalizes with actin in filament-like structures in Leishmania. Molecular and Biochemical Parasitology 143, 152164. doi:10.1016/j.molbiopara.2005.06.001CrossRefGoogle ScholarPubMed
Nepomuceno-Silva, J. L., Yokoyama, K., de Mello, L. D., Mendonca, S. M., Paixao, J. C., Baron, R., Faye, J. C., Buckner, F. S., Van Voorhis, W. C., Gelb, M. H. and Lopes, U. G. (2001). TcRho1, a farnesylated Rho family homologue from Trypanosoma cruzi: cloning, trans-splicing, and prenylation studies. Journal of Biological Chemistry 276, 2971129718. doi:10.1074/jbc.M102920200CrossRefGoogle ScholarPubMed
Nolan, D. P. and Garcia-Salcedo, J. A. (2008). Loss of actin does not affect export of newly synthesized proteins to the surface of Trypanosoma brucei. Molecular and Biochemical Parasitology 157, 233235. doi:10.1016/j.molbiopara.2007.10.006CrossRefGoogle ScholarPubMed
Ono, S. (2003). Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. Biochemistry 42, 1336313370. doi:10.1021/bi034600x S0006-2960(03)04600-2CrossRefGoogle ScholarPubMed
Paavilainen, V. O., Bertling, E., Falck, S. and Lappalainen, P. (2004). Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends in Cell Biology 14, 386394. doi:10.1016/j.tcb.2004.05.002CrossRefGoogle ScholarPubMed
Paunola, E., Mattila, P. K. and Lappalainen, P. (2002). WH2 domain: a small, versatile adapter for actin monomers. FEBS Letters 513, 9297. doi:10.1016/S0014-5793(01)03242-2CrossRefGoogle Scholar
Pollard, T. D. and Beltzner, C. C. (2002). Structure and function of the Arp2/3 complex. Current Opinion in Structural Biology 12, 768774. doi:10.1016/S0959-440(02)00396-2CrossRefGoogle ScholarPubMed
Puius, Y. A., Mahoney, N. M. and Almo, S. C. (1998). The modular structure of actin-regulatory proteins. Current Opinion in Cell Biology 10, 2334. doi:10.1016/S0955-0674(98)80083-5CrossRefGoogle ScholarPubMed
Sahasrabuddhe, A. A., Bajpai, V. K. and Gupta, C. M. (2004). A novel form of actin in Leishmania: molecular characterisation, subcellular localisation and association with subpellicular microtubules. Molecular and Biochemical Parasitology 134, 105114. doi:10.1016/j.molbiopara.2003.11.008CrossRefGoogle ScholarPubMed
Schneider, A., Plessmann, U. and Weber, K. (1997). Subpellicular and flagellar microtubules of Trypanosoma brucei are extensively glutamylated. Journal of Cell Science 110, 431437.Google Scholar
Scott, V., Sherwin, T. and Gull, K. (1997). Gamma-tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres. Journal of Cell Science 110, 157168.Google Scholar
Sheterline, P. and Sparrow, J. C. (1994). Actin. Protein Profile 1, 1121.Google ScholarPubMed
Stradal, T., Kranewitter, W., Winder, S. J. and Gimona, M. (1998). CH domains revisited. FEBS Letters 431, 134137. doi:10.1016/S0014-5793(98)00751-0CrossRefGoogle ScholarPubMed
Wear, M. A. and Cooper, J. A. (2004). Capping protein: new insights into mechanism and regulation. Trends in Biochemical Sciences 29, 418428. doi:10.1016/j.tibs.2004.06.003CrossRefGoogle ScholarPubMed
Weaver, A. M., Young, M. E., Lee, W. L. and Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Current Opinion in Cell Biology 15, 2330. doi:10.1016/S0955-0674(02)00015-7CrossRefGoogle Scholar
Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. and Mitchison, T. J. (1997). The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. Journal of Cell Biology 138, 375384.CrossRefGoogle ScholarPubMed
Wilson, W. and Seebeck, T. (1997). Identification of a profilin homologue in Trypanosoma brucei by complementation screening. Gene 187, 201209. doi:10.1016/S0378-1119(96)00749-4CrossRefGoogle ScholarPubMed
Zigmond, S. H. (2004). Formin-induced nucleation of actin filaments. Current Opinion in Cell Biology 16, 99105. doi:10.1016/j.ceb.2003.10.019CrossRefGoogle ScholarPubMed
Supplementary material: Image

De Melo Supplementary Material

Figure1.tif

Download De Melo Supplementary Material(Image)
Image 1.6 MB
Supplementary material: Image

De Melo Supplementary Material

Figure2.tif

Download De Melo Supplementary Material(Image)
Image 638.2 KB
Supplementary material: Image

De Melo Supplementary Material

Figure3.tif

Download De Melo Supplementary Material(Image)
Image 758.6 KB