Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-07T08:31:54.708Z Has data issue: false hasContentIssue false

The evolutionary biology of molecular parasites

Published online by Cambridge University Press:  06 April 2009

S. Nee
Affiliation:
AFRC Unit of Ecology and Behaviour, Department of Zoology, South Parks Road, Oxford OX1 3PS
J. Maynard Smith
Affiliation:
Department of Biology, Sussex University, Brighton, Sussex BN1 9QG

Extract

A parasite can be considered to be the device of a nucleic acid which allows it to exploit the gene products of other nucleic acid–the host organisms. In this view, all parasites are ‘molecular parasites’. But it is interesting to restrict our attention to nucleic acids which do not encode organisms, as these live in a purely molecular world which lacks emergent features such as fangs and ovipositors. Viruses and transposons are molecular parasites in this sense. Most viral nucleic acids do code for some proteins, such as replicases and the protein shell in which they travel between their cellular oases. Some, however, do not even have a shell and code for nothing at all–these are the ‘viroids’ (Reisner & Gross, 1985), the smallest parasites in the world.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berns, K. I., Muzyczka, N. & Hauswirth, W. W. (1985). Replication of parvoviruses. In Virology (ed. Fields, B. N.), pp. 415–32: New York: Raven Press.Google Scholar
Biebricher, C. K., Eigen, M. & Gardiner, W. C. (1985). Kinetics of RNA replication: competition and selection among self-replicating RNA species. Biochemistry 24, 6550–60.CrossRefGoogle ScholarPubMed
Boeke, J. D. (1988). Retrotransposons. In RNA Genetics, vol. 2 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 59103. Boca Raton, FL: CRC Press.Google Scholar
Bosch, V., Kuhn, C. & Schaller, H. (1988). Hepatitis B virus replication. In RNA Genetics, vol. 2 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 4358. Boca Raton, FL: CRC Press.Google Scholar
Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In Evolution of Genes and Proteins (ed. Nei, M. & Koehn, R. K.), pp. 6288. Sunderland, MA: Sinauer Associates Inc.Google Scholar
Bruening, G. (1977). Plant covirus systems: two component systems. In Comprehensive Virology, vol. 11 (ed. Fraenkel-Conrat, H. & Wagner, R. R.), pp. 55142. New York: Plenum Press.CrossRefGoogle Scholar
Bryan, G. J., Jacobson, J. W. & Hartl, D. L. (1987). Heritable somatic excision of a Drosophila transposon. Science 235, 1636–8.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1987). The population biology of transposable elements. Trends in Ecology and Evolution 2, 21–3.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1988). The maintenance of transposable elements in natural populations. In Plant Transposable Elements (ed. Nelson, O. J.), pp. 189212. New York: Plenum Press.CrossRefGoogle Scholar
Charlesworth, B. & Langley, C. H. (1986). The evolution of self-regulated transposition of transposable elements. Genetics 112, 359–83.CrossRefGoogle ScholarPubMed
Coffin, J. (1984). Structure of the retroviral genome. In RNA Tumor Viruses, 2nd edn, vol. 1 (ed. Weiss, R., Teich, N., Varmus, H. & Coffin, J.), pp. 261368. New York: Cold Spring Harbor Laboratory.Google Scholar
Coffin, J. (1988). Replication of retrovirus genomes. In RNA Genetics, vol. 2 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 322. Boca Raton, FL: CRC Press.Google Scholar
Condit, R., Stewart, F. M. & Levin, B. R. (1988). The population biology of bacterial transposons: a priori conditions for maintenance as parasitic DNA. American Naturalist 132, 129–47.CrossRefGoogle Scholar
Depolo, N. J., Giachetti, C. & Holland, J. J. (1987). Continuing coevolution of virus and defective interfering particles and of viral genome sequences during undiluted passages: virus mutants exhibiting nearly complete resistance to formerly dominant defective interfering particles. Journal of Virology 61, 454–64.CrossRefGoogle ScholarPubMed
Domingo, E. & Holland, J. J. (1988). High error rates, population equilibrium and evolution of RNA replication systems. In RNA Genetics, vol. 3 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 336. Boca Raton, FL: CRC PressGoogle Scholar
Doolittle, R. F., Feng, D.-F., Johnson, M. S. & McClure, M. A. (1989). Origins and evolutionary relationships of retroviruses. Quarterly Review of Biology 64, 130.CrossRefGoogle ScholarPubMed
Eigen, M. & Biebricher, C. K. (1988). Sequence space and quasispecies distribution. In RNA Genetics, vol. 3 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 211–45. Boca Raton, FL: CRC Press.Google Scholar
Eigen, M. & Schuster, M. E. P. (1979). The Hypercycle. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Emerson, S. U. (1985). Rhabdoviruses. In Virology (ed. Fields, B. N.), pp. 1119–32. New York: Raven Press.Google Scholar
Fields, B. N. (1985). Virology. New York: Raven Press.Google Scholar
Franki, R. I. B. (1985). Plant virus satellites. Annual Review of Microbiology 39, 151–74CrossRefGoogle Scholar
Fuetter, J. & Hohn, P. (1987). Involvement of nucleocapsids in reverse transcription: a general phenomenon? Trends in Biochemical Sciences 12, 92–5.CrossRefGoogle Scholar
Ganem, D. & Varmus, H. E. (1987). The molecular biology of the hepatitis B viruses. Annual Review of Biochemistry 56, 651–94.CrossRefGoogle ScholarPubMed
Gombold, J. L. & Ramig, R. F. (1986). Analysis of reassortment of genome segments in mice mixedly infected with rotaviruses SA11 and RRV. Journal of Virology 57, 110–16.CrossRefGoogle ScholarPubMed
Hickey, D. A. & Rose, M. R. (1988). The role of gene transfer in the evolution of eukaryotic sex. In The Evolution of Sex (ed. Michod, R. E. & Levin, B. R.), pp. 161–75. Sunderland, MA: Sinauer Associates Inc.Google Scholar
Hillman, B., Carrington, J. C. & Morris, T. J. (1987). A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51, 427–33.CrossRefGoogle ScholarPubMed
Holland, J. J. (1985). Generation and replication of defective genomes. In Virology (ed. Fields, B. N.), pp. 77100. New York: Raven Press.Google Scholar
Holland, J. J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S. & Vandepol, S. (1982). Rapid evolution of RNA genomes. Science 215, 1577–85.CrossRefGoogle ScholarPubMed
Huang, A. S. (1988). Modulation of viral disease processes by defective interfering particles. In RNA Genetics, vol. 3 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 195210. Boca Raton FL: CRC Press.Google Scholar
Kaplan, N., Darden, T. & Langley, C. H. (1985). Evolution and extinction of transposable elements in mendelian populations. Genetics 109, 459–80.CrossRefGoogle ScholarPubMed
Katz, R. A., Kotler, M. & Skalka, A. M. (1988). Cisacting intron mutations that affect the efficiency of avian retroviral RNA splicing: implication for mechanisms of control. Journal of Virology 62, 2686–95.CrossRefGoogle ScholarPubMed
Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Oxford: Oxford University Press.CrossRefGoogle Scholar
King, A. M. Q. (1988). Genetic recombination in positive strand RNA viruses In RNA Genetics, vol. 2 (ed. Domingo, E.Holland, J. J. & Ahlquist, P.), pp. 149–66. Boca Raton, FL: CRC Press.Google Scholar
Kondrashov, A. S. (1988). Deleterious mutations and the evolution of sexual reproduction. Nature, London 336, 435–40.CrossRefGoogle ScholarPubMed
Kornberg, A. (1980). DNA Replication. San Francisco: W. H. Freeman & Co.Google Scholar
Lai, M. M. C. (1988). Replication of coronavirus RNA. In RNA Genetics, vol. 1 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 115136. Boca Raton, FL: CRC Press.Google Scholar
Lee, T. & Nathans, D. (1979). Evolutionary variants of SV40: replication and encapsidation of variant DNA. Virology 92, 291–8.CrossRefGoogle Scholar
Levin, J. G. & Rosenak, M. J. (1976). Synthesis of murine leukemia virus proteins associated with virions assembled in actinomycin D-treated cells: evidence for persistence of viral messenger RNA. Proceedings of the National Academy of Sciences, USA 73, 1154–8.CrossRefGoogle ScholarPubMed
Lewin, B. (1977). Gene Expression, vol. 3. New York: John Wiley & Sons.Google Scholar
Linial, M. & Blair, D. (1984). Genetics of retroviruses. In RNA Tumor viruses, 2nd edn, vol. 1 (ed. Weiss, R., Teich, N., Varmus, H. & Coffin, J.), pp. 649784. New York: Cold Spring Harbor Laboratory.Google Scholar
Lowy, D. R. (1985). Transformation and oncogenesis: retroviruses. In Virology (ed. Fields, B. N.), pp. 235–64. New York: Raven Press.Google Scholar
Luria, S. E., Darnell, J. E., Baltimore, D. & Campbell, A. (1978). General Virology. New York: John Wiley & Sons.Google Scholar
Matthews, R. E. F. (1979). Classification and nomenclature of viruses. Intervirology 12, 150287.Google ScholarPubMed
Smith, Maynard J. (1983). Models of evolution. Proceedings of the Royal Society of London B219, 315–25.Google Scholar
Smith, Maynard J. (1989). Evolutionary Genetics. Oxford: Oxford University Press.Google Scholar
Modrich, P. (1987). DNA mismatch correction. Annual Review of Biochemistry 56, 435–66.CrossRefGoogle ScholarPubMed
Nee, S. (1987). The evolution of multicompartmental genomes in viruses. Journal of Molecular Evolution 25, 277–81.CrossRefGoogle ScholarPubMed
Nee, S. (1989 a). On the evolution of sex in RNA viruses. Journal of Theoretical Biology 138, 407–12.CrossRefGoogle ScholarPubMed
Nee, S. (1989 b). Antagonistic coevolution and the evolution of genotypic randomisation. Journal of Theoretical Biology 140, 499518.CrossRefGoogle Scholar
Nowak, M. & Schuster, P. (1989). Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller's Ratchet. Journal of Theoretical Biology 137, 375–95.CrossRefGoogle ScholarPubMed
O'neill, F. J., Maryon, E. B. & Carroll, D. (1982). Isolation and characterization of defective simian virus 40 genomes which complement for infectivity. Journal of Virology 43, 1825.CrossRefGoogle ScholarPubMed
Overbaugh, J., Donahue, P. R., Quackenbush, S. L., Hoover, E. A. & Mullins, J. I. (1988). Molecular cloning of a feline leukemia virus that induces fatal immunodeficiency disease in cats. Science 239, 906–10.CrossRefGoogle ScholarPubMed
Panganiban, A. T. & Fiore, D. (1988). Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241, 1064–9.CrossRefGoogle ScholarPubMed
Pressing, J. & Reanney, D. C. (1984). Divided genomes and intrinsic noise. Journal of Molecular Evolution 20, 135–46.CrossRefGoogle ScholarPubMed
Re, G. G. & Kingsbury, D. W. (1988). Paradoxical effects of Sendai virus DI RNA size on survival: inefficient envelopment of small nucleocapsids. Virology 165, 331–7.CrossRefGoogle ScholarPubMed
Reanney, D. C. (1982). The evolution of RNA viruses. Annual Review of Microbiology 36, 4773.CrossRefGoogle ScholarPubMed
Riesner, D. & Gross, H. J. (1985). Viroids. Annual Review of Biochemistry 54, 531–64.CrossRefGoogle ScholarPubMed
Roizmann, B. (1985). Multiplication of viruses: an overview. In Virology, (ed. Fields, B. N.), pp. 6976. New York: Raven Press.Google Scholar
Rubin, G. M. (1983). Dispersed repetitive DNAs in Drosophila. In Mobile Genetic Elements (ed. Shapiro, J. A.) pp. 329–62. New York: Academic Press.Google Scholar
Schlesinger, S. (1988). The generation and amplification of defective interfering RNAs. In RNA Genetics, vol. 2 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 167–86. Boca Raton, FL: CRC Press.Google Scholar
Shah, K. V. (1985). Papovaviruses. In Virology (ed. Fields, B. N.), pp. 371–93. New York: Raven Press.Google Scholar
Shapiro, J. A. (1983). Mobile Genetic Elements. New York: Academic Press.Google Scholar
Simmons, M. J., Raymond, J. D., Boedigheimer, M. J. & Zunt, J. R. (1987). The influence of non-autonomous P elements on hybrid dysgenesis in Drosophila melanogaster. Genetics 117, 671–85.CrossRefGoogle Scholar
Spiegelman, S., Mills, D. R. & Kramer, F. R. (1975). The extracellular evolution of structure in replicating RNA molecules. In Stability and Origin of Biological Information (ed. Miller, I. R.), New York: Halsted Press.Google Scholar
Spradling, A. C. & Rubin, G. M. (1981). Drosophila genome organisation: conserved and dynamic aspects. Annual Review of Genetics 15, 219–64.CrossRefGoogle ScholarPubMed
Stott, J. L., Oberst, R. D., Channell, M. B. & Osburn, B. I. (1987). Genome segment reassortment between two serotypes of bluetongue virus in a natural host. Journal of Virology 61, 2670–80.CrossRefGoogle Scholar
Szathmary, E. (1989). The integration of the earliest genetic information. Trends in Ecology and Evolution 4, 200–4.CrossRefGoogle ScholarPubMed
Varmus, H. & Swanstrom, R. (1984). Replication of retroviruses. In RNA Tumor Viruses, 2nd edn, vol. 1 (ed. Weiss, R., Teich, N., Varmus, H. & Coffin, J.), pp. 369512. New York: Cold Spring Harbor Laboratory.Google Scholar
Weissbach, A. (1977). Eukaryotic DNA polymerases. Annual Review of Biochemistry 46, 2547.CrossRefGoogle ScholarPubMed
Younger, J. S., Jones, E. V., Kelly, M. & Frielle, D. W. (1981). Generation and amplification of temperature sensitive mutants during serial undiluted passages of vesicular stomatitis virus. Virology 108, 8797.CrossRefGoogle Scholar
Zimmern, D. (1988). Evolution of RNA viruses. In RNA Genetics, vol. 2 (ed. Domingo, E., Holland, J. J. & Ahlquist, P.), pp. 211–42. Boca Raton, FL: CRC Press.Google Scholar