Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:20:26.823Z Has data issue: false hasContentIssue false

Evolutionary aspects of transmitter molecules, their receptors and channels

Published online by Cambridge University Press:  06 April 2009

R. J. Walker
Affiliation:
Department of Physiology and Pharmacology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO9 3TU
L. Holden-Dye
Affiliation:
Department of Physiology and Pharmacology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO9 3TU

Extract

Classical transmitters are present in all phyla that have been studied; however, our detailed understanding of the process of neurotransmission in these phyla is patchy and has centred on those neurotransmitter receptor mechanisms which are amenable to study with the tools available at the time, for example, high-affinity ligands, tissues with high density of receptor protein, suitable electrophysio-logical recording systems. Studies also clearly show that many neurones exhibit co-localization of classical transmitters and neuropeptides. However, the physiological implications of this co-localization have yet to be elucidated in the vast majority of examples.

The application of molecular biological techniques to the study of neurotransmitter receptors (to date mainly in vertebrates) is contributing to our understanding of the evolution of these proteins. Striking similarities in the structure of ligand-gated receptors have been revealed. Thus, although ligand-gated receptors differ markedly in terms of the endogenous ligands they recognize and the ion channels that they gate, the structural similarities suggest a strong evolutionary relationship. Pharmacological differences also exist between receptors that recognize the same neurotransmitter but in different phyla, and this may also be exploited to further the understanding of structure-function relationships for receptors. Thus, for instance, some invertebrate GABA receptors are similar to mammalian GABAa receptors but lack a modulatory site operated by benzodiazepines. Knowledge of the structure and subunit composition of these receptors and comparison with those that have already been elucidated for the mammalian nervous system might indicate the functional importance of certain amino acid residues or receptor subunits. These differences could also be exploited in the development of new agents to control agrochemical pests and parasites of medical importance.

The study of the pharmacology of receptor proteins for neurotransmitters in invertebrates, together with the application of biochemical and molecular biological techniques to elucidate the structure of these molecules, is now gathering momentum. For certain receptors, e.g. the nicotinic receptor, we can expect to have fundamental information on the function of this receptor at the molecular level in both invertebrates and vertebrates in the near future.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airaksinen, M. S. & Panula, P. (1988). The histaminergic system in the guinea pig central nervous system: Journal of comparative Neurology 273, 163–86.CrossRefGoogle ScholarPubMed
Anderson, P. A. V. & Schwab, W. E. (1982). Recent advances and model systems in coelenterate neurobiology. Progress in Neurobiology 19, 213–36.CrossRefGoogle ScholarPubMed
Andreini, G. L., Beretta, C., Faustini, R. & Gallina, G. (1970). Spectrophotometric and chromatographic characterization of a butanol extract from Fasciola hepatica. Experientia 26, 166–7.CrossRefGoogle Scholar
Bakary, Z. El, Fuzeau-Braesch, S. & Papin, C. (1988). Detection of biogenic amines and nychthermeral variations in the scorpion Leiurus quinquestriatus. Comparative Biochemistry and Physiology 90C, 173–7.Google Scholar
Baker, R. & Llinas, R. (1971). Electrotonic coupling between neurones in the rat mesencephalic nucleus. Journal of Physiology 212, 4563.CrossRefGoogle ScholarPubMed
Barker, D. L., Herbert, E., Hildebrand, J. G. & Kravitz, E. A. (1972). Acetylcholine and lobster sensory neurones. Journal of Physiology (London) 226, 205–29.CrossRefGoogle ScholarPubMed
Barnes, R. S. K., Calow, P. & Olive, P. J. W. (1988). The Invertebrates: a New Synthesis. Oxford: Blackwell Scientific Publ.Google Scholar
Barraco, R. A. & Stefano, G. B. (1990). Pharmacological evidence for the modulation of monoamine release by adenosine in the invertebrate nervous system. Journal of Neurochemistry 54, 2002–6.CrossRefGoogle ScholarPubMed
Beltz, B., Eisen, J. S., Flamm, R. E., Harris-Warrick, R. M., Hooper, S. L. & Marder, E. (1984). Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans, (Panulirus interruptus, Homarus americanus and Cancer irroratus). Journal of experimental Biology 109, 3554.CrossRefGoogle ScholarPubMed
Benke, D., Stahner, I. & Breer, H. (1989). Monoclonal antibodies detecting regulatory polypeptides of the insect neuronal acetylcholine receptor. Journal of experimental Biology 147, 329–42.CrossRefGoogle Scholar
Benson, J. A. (1988). Transmitter receptors on insect neuronal somata: GABAergic and cholinergic pharmacology. In Molecular Basis of Drug and Pesticide Action, pp. 193206 (ed. Lunt, G. G.) Amsterdam: Elsevier Science Publishers, BV.Google Scholar
Benson, J. A. (1989). A novel GABA receptor in the heart of a primitive arthropod. Journal of experimental Biology 147, 421–38.CrossRefGoogle Scholar
Berridge, M. J. & Patel, N. G. (1968). Insect salivary glands: stimulation of fluid secretion by 5-HT and camp. Science 162, 462–3.CrossRefGoogle Scholar
Berry, M. S. & Cottrell, G. A. (1975). Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine-containing neurone. Journal of Physiology (London) 244, 589612.CrossRefGoogle ScholarPubMed
Bewick, G. S., Price, D. A. & Cottrell, G. A. (1990). The fast response mediated by the C-3 motoneurone of Helix is not attributable to the contained FMRFamide. Journal of experimental Biology 148, 201–19.CrossRefGoogle Scholar
Bishop, C. A., Wine, J. J., Nagy, F. & O'Shea, M. R. (1987). Physiological consequences of a peptide co-transmitter in a crayfish nerve-muscle preparation. Journal of Neuroscience 7, 1769–79.CrossRefGoogle Scholar
Blankenship, J. E., Wachtel, H. & Kandel, E. R. (1971). Ionic mechanisms of excitatory, inhibitory and dual synaptic actions mediated by an identified interneurone in abdominal ganglion of Aplysia. Journal of Neurophysiology 34, 7692.CrossRefGoogle ScholarPubMed
Bodenmuller, H. & Schaller, H. C. (1981). Conserved amino acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature, London 293, 579–80.CrossRefGoogle ScholarPubMed
Boer, H. H., Schot, L. P. C., Steinbusch, H. W. M., Montagne, C. & Reichelt, D. (1984). Co-existence of immunoreactivity to anti-dopamine, anti-serotonin and anti-vasotocin in the cerebral giant neuron of the pond snail, Lymnaea stagnalis. Cell and Tissue Research 238, 411–12.CrossRefGoogle ScholarPubMed
Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S. & Patrick, J. (1986). Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit. Nature, London 319, 368–74.CrossRefGoogle ScholarPubMed
Boyd, P. J., Osborne, N. N. & Walker, R. J. (1984). The pharmacological actions of 5-hydroxytryptamine, FMRFamide and Substance P and their possible occurrence in the heart of the snail Helix aspersa. Neurochemistry International 6, 633–40.CrossRefGoogle ScholarPubMed
Boyd, P. J., Osborne, N. N. & Walker, R. J. (1985). Localization of Substance P-like material in the central and peripheral nervous system of the snail, Helix aspersa. Histochemistry 84, 97103.CrossRefGoogle Scholar
Boyd, P. J., Osborne, N. N. & Walker, R. J. (1987). Localization of Arg-Vasopressin-like material in central neurones and mechanism of action of Arg-Vasotocin on identified neurones of the snail, Helix aspersa. Neuropharmacology 26, 1633–47.CrossRefGoogle ScholarPubMed
Bradford, H. F. (1986). Chemical Neurobiology. New York: Freeman.Google Scholar
Breer, H. (1981). Characterization of synaptosomes from the central nervous system of insect. Neurochemistry International 3, 155–63.CrossRefGoogle Scholar
Brown, B. E. & Starratt, A. N. (1975). Isolation of proctolin, a myotropic peptide, from Periplaneta americana. Journal of Insect Physiology 21, 1879–81.CrossRefGoogle Scholar
Brown, I. (1989). Studies on the physico-chemical basis of behaviour in Tetrahymena. Ph.D thesis. University of Southampton, England.Google Scholar
Brownell, P. H. (1983). Neuroendocrine mechanisms of visceromotor behaviour in Aplysia. In Molluscan Neuro-Endocrinology (ed. Lever, J. & Boer, H. H.) pp. 256263; Amsterdam: North Holland.Google Scholar
Burnstock, G. (1985). Purinergic mechanisms broaden their sphere of influence. Trends in Neuroscience 8, 56.CrossRefGoogle Scholar
Callaway, J. C., Masinovski, B. & Graubard, K. (1987). Co-localization of SCP-B-like and FMRFamide-like immunoreactivities in crustacean nervous system. Brain Research 405, 295304.CrossRefGoogle Scholar
Callaway, J. C. & Stuart, A. E. (1989). Biochemical and physiological evidence that histamine is the transmitter of barnacle photoreceptors. Visual Neurosciences 3, 311–25.CrossRefGoogle ScholarPubMed
Carr, W. E. S., Gleeson, R. A., Ache, B. W. & Milstead, M. L. (1986). Olfactory receptors of the spiny lobster: ATPase-sensitive cells with similarities to P-2-type purinoceptors of vertebrates. Journal of Comparative Physiology 158, 331–8.CrossRefGoogle Scholar
Chad, J. E. & Kerkut, G. A. (1981). Summation of membrane current conductance responses as evidence for independent ionophore populations. Comparative Biochemistry and Physiology 69C, 61–5.Google Scholar
Chen, S-T., Tsai, M. S. & Shen, C. L. (1989). Distribution of FMRFamide-like immunoreactivity in the central nervous system of the Formosan monkey (Macaca cyclopsis). Peptides 10, 825–34.CrossRefGoogle ScholarPubMed
Chiu, A. Y., Hunkapiller, M. W., Heller, E., Stuart, D. K., Hood, L. E. & Strumwasser, F. (1979). Purification and primary structure of the neuropeptide egg-laying hormone of Aplysia californica. Proceedings of the National Academy of Sciences, USA 76, 6656–60.CrossRefGoogle ScholarPubMed
Chou, T. T., Bennett, J. & Bueding, E. (1972). Occurrence and concentration of biogenic amines in trematodes. Journal of Parasitology 58, 1098–102.CrossRefGoogle ScholarPubMed
Christensen, T. A., Sherman, T. G., McCaman, R. E. & Carlson, A. D. (1983). Presence of octapamine in firefly photomotor neurons. Neuroscience 9, 183–9.CrossRefGoogle Scholar
Cline, H. T. (1986). Evidence for GABA as a neurotransmitter in the leech. Journal of Neuroscience 6, 2848–56.CrossRefGoogle ScholarPubMed
Cline, H., Nusbaum, M. P. & Kristan, W. B. (1985). Identified GABAergic inhibitory motor neurones in the leech nervous system take up GABA. Brain Research 348, 359–62.CrossRefGoogle ScholarPubMed
Collins, C. & Miller, T. A. (1977). Studies on the action of biogenic amines on cockroach heart. Journal of experimental Biology 67, 115.CrossRefGoogle ScholarPubMed
Cottrell, G. A. & Macon, J. B. (1974). Synaptic connections of two symmetrically placed giant serotonin-containing neurones. Journal of Physiology 236, 435–64.CrossRefGoogle ScholarPubMed
Cowden, C., Stretton, A. O. W. & Davis, R. E. (1989). AF1, a sequenced bioactive neuropeptide isolated from the nematode, Ascaris summ. Neuron 2, 1465–73.CrossRefGoogle Scholar
Cox, R. T. L. & Walker, R. J. (1988). An analysis of the inhibitory responses of dopamine and octopamine on Helix central neurones. Comparative Biochemistry and Physiology 88C, 121–30.Google Scholar
Dockray, G. J., Reeve, J. R., Shirley, J., Gayton, R. J. & Barnard, C. S. (1983). A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature, London 305, 328–30.CrossRefGoogle ScholarPubMed
Ebberink, R. H. M., Price, D. A., Loenhout, H.Van, Doble, K. E., Riehm, J. P., Geraerts, W. P. M. & Greenberg, M. J. (1987). The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8, 515–22.CrossRefGoogle ScholarPubMed
Eckert, R. (1963). Electrical interaction of paired ganglion cells in the leech. Journal of General Physiology 46, 575–87.Google ScholarPubMed
Eklove, H. & Webb, R. A. (1990 a) Glutamate-like immunoreactivity in the cestode Hymenolepis diminuta. Canadian Journal of Zoology (in the Press).CrossRefGoogle Scholar
eklove, H. & Webb, R. A. (1990 b). The effect of L-glutamate and related agents on adenylate cyclase in the cestode Hymenolepis diminuta. Canadian Journal of Physiology and Pharmacology (in the Press).Google Scholar
Elofsson, R., Laxmyr, L., Rosengren, E. & Hansson, C. (1982). Identification and quantitative measurements of biogenic amines and DOPA in the central nervous system and haemolymph of the crayfish, Pacifastacus leniusculus (Crustacea). Comparative Biochemistry and Physiology 71C, 195201.Google Scholar
Enna, S. J. & Karbon, E. W. (1986). GABA receptors: An overview. In Benzodiazepine/GABA Receptors and Chloride Channels - Structural and Functional Properties, pp. 4156, (ed. Olsen, R. W. & Venter, J. C.) New York: Alan R. Liss Inc.Google Scholar
Evans, P. D. (1985). Octopamine. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (ed. Kerkut, G. A. & Gilbert, L. I.), Vol. 11, pp. 499530. Oxford: Pergamon Press.Google Scholar
Evans, P. D. & Calabrese, R. L. (1989). Small cardioactive peptide-like immunoreactivity and its colocalization with FMRFamide-like immunoreactivity in the central nervous system of the leech, Hirudo medicinalis. Cell and Tissue Research 257, 187–99.CrossRefGoogle ScholarPubMed
Evans, P. D. & Cournil, I. (1990). Co-localization of FLRF-and vasopressin-like immunoreactivity in a single pair of sexually dimorphic neurones in the nervous system of the locust. Journal of Comparative Neurology 292, 331–48.CrossRefGoogle Scholar
Evans, P. D., Kravitz, E. A., Talamo, B. R. & Wallace, B. G. (1976). The association of octopamine with specific neurones along lobster nerve trunks. Journal of Physiology 262, 5170.CrossRefGoogle ScholarPubMed
Evans, P. D. & O'Shea, M. (1978). The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. Journal of experimental Biology 73, 235–60.CrossRefGoogle ScholarPubMed
Fagg, G. E. & Foster, A. C. (1983). Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9, 701–19.CrossRefGoogle ScholarPubMed
Fairweather, I., Macartney, G. A., Johnston, C. F., Halton, D. W. & Buchanan, K. D. (1988). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology Research 74, 371–9.CrossRefGoogle ScholarPubMed
Fairweather, I., Maule, A. G., Mitchell, S. H., Johnston, C. F. & Halton, D. W. (1987). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology Research 73, 255–8.CrossRefGoogle ScholarPubMed
Febre-Chevalier, C. (1989). Excitability and contractility in a primitive eukaryote, the helizoan Actinocoryne contractilis. In Evolution of the First Nervous Systems. St. Andrews, Scotland. (Unpublished abstract.)Google Scholar
Flamm, R. E. & Harris-Warrick, R. M. (1986). Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine and serotonin within the pyloric circuite. Journal of Neurophysiology 55, 866–81.CrossRefGoogle Scholar
Fujisawa, Y., Kubota, I., Ikeda, T. & Muneoka, Y. (1989). Bioactive peptides isolated from the anterior byssus retractor muscle of the bivalve mollusc, Mytilus edulid. Peptide Chemistry 51–6.Google Scholar
Furshpan, E. J. & Potter, D. D. (1959). Transmission at the giant motor synapses of the crayfish. Journal of Physiology 145, 289325.CrossRefGoogle ScholarPubMed
Gianutsos, G. & Bennett, J. L. (1977). The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology 58C, 157–9.Google ScholarPubMed
Giraudat, J., Dennis, M., Heidmann, T., Haumont, P. T., Lederer, P. & Changeux, J. P. (1987). Structure of the high affinity site for non competitive blockers of the acetylcholine receptor: [3H]-chlorpromazine labels homologous residues in the beta and delta chains. Biochemistry 26, 2410–18.CrossRefGoogle Scholar
Goh, S. L. & Davey, K. G. (1976). Localization and distribution of catecholaminergic structures in the nervous system of Phocanema decipiens (Nematoda). International Journal for Parasitology 6, 403–11.CrossRefGoogle ScholarPubMed
Grace, A. A. & Bunney, B. S. (1985). Dopamine. In Neurotransmitter Actions in the Vertebrate Central Nervous System, pp. 285319 (ed. Rogawski, M. A. & Barker, J. L.) New York: Plenum Press.CrossRefGoogle Scholar
Gration, K. A. F., Clark, R. B. & Usherwood, P. N. R. (1979). Three types of L-glutamate receptor on junctional membrane of locust fibres. Brain Research 171, 360–4.CrossRefGoogle ScholarPubMed
Greenberg, M. J., Payza, K., Nachman, R. J., Holman, G. M. & Rice, D. A. (1988). Relationships between the FMRFamide-related peptides and other peptide families. Peptides 9 (Suppl. 1), 125–35.CrossRefGoogle ScholarPubMed
Greeningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D. & Betsz, H. (1987). The strychnine binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature, London 328, 215–20.CrossRefGoogle Scholar
Grimmelikhuijzen, C. J. P. (1986). FMRFamide-like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals. In Handbook of Comparative Opioid and Related Neuropeptides Mechanism; pp. 103115; (ed. Stephano, G.) Boca Raton, Florida: CRC Press.Google Scholar
Grimmelikhuijzen, C. J. P. & Graff, D. (1985). Arg-Pheamide-like peptides in the primitive nervous systems of coelenterates. Peptides 6, (Suppl. 3), 477–83.CrossRefGoogle ScholarPubMed
Grimmelikhuijzen, C. J. P. & Graff, D. (1986). Isolation of < Glu-Gly-Arg-Phe-NH2 (Antho-RFamide) a neuropeptide from sea anemones. Proceedings of the national Academy of Sciences, USA 83, 9817–21.CrossRefGoogle Scholar
Grimmelikhuijzen, C. J. P., Graff, D., Koizumi, O., Westfall, J. A. & Mcfarlane, I. D. (1990). Neuropeptides in Coelenterates. In Proceedings of the Vth International Conference on Coelenterates (in the Press).Google Scholar
Grimmelikhuijzen, C. J. P., Hahn, M., Rinehart, K. L. & Spencer, A. N. (1988). Isolation of < Glu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol-RFamide), a novel neuropeptide from hydromedusae. Brain Research 475, 198203.CrossRefGoogle Scholar
Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.CrossRefGoogle ScholarPubMed
Haas, H. I. (1985). Histamine. In Neurotransmitter Actions in the Vertebrate Central Nervous System, pp. 321337, (ed. Rogawski, M. A. & Barker, J. L.). New York: Plenum Press.CrossRefGoogle Scholar
Hanke, W. & Breer, h. (1987). Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers. Journal of general Physiology 90, 855–79.CrossRefGoogle ScholarPubMed
Hardie, R. C. (1987). Is histamine a neurotransmitter in insect photoreceptors? Journal of Comparative Physiology 161, 201–13.CrossRefGoogle ScholarPubMed
Hardie, R. C. (1988). Effect of antagonists on putative histamine receptors in the first visual neuropile of the housefly, (Musca domestica). Journal of experimental Biology 138, 221–41.CrossRefGoogle Scholar
Hardie, R. C. (1989). A histamine-activated chloride channel underlying synaptic transmission at a photoreceptor synapse. Nature, London 339, 704–6.CrossRefGoogle Scholar
Harvey, R. J., Vreugdenhil, E., Barnard, E. A. & Darlison, M. G. (1990). Cloning of genomic and cDNA sequences encoding an invertebrate γ-aminobutyric acida receptor subunit. Biochemical Society Transactions 18, 438–9.CrossRefGoogle ScholarPubMed
Hildebrand, J. G., Townsel, J. G. & Kravitz, E. A. (1974). Distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in regions and single identified axons of the lobster nervous system. Journal of Neurochemistry 23, 951–63.CrossRefGoogle ScholarPubMed
Hille, B. (1984). Ionic Channels in Excitable Membranes. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Hille, B. (1988). Evolutionary origin of electrical excitability. In Cellular Mechanisms of Conditioning and Behavioural Plasticity, (ed. Wood, C. D., Alkon, D. L. & McGaugh, J. L.), pp. 511518. New York: Plenum Press.CrossRefGoogle Scholar
Hille, B. (1989). Ionic channels: Evolutionary origins and modern roles. Quarterly Journal of Experimental Physiology 74, 785804.CrossRefGoogle ScholarPubMed
Hirata, T., Kubota, I., Takabatake, I., Kawahara, A., Shimamoto, N. & Muneoka, Y. (1987). Catch-relaxing peptide isolated from Mytilus pedal ganglia. Brain Research 422, 374–6.CrossRefGoogle ScholarPubMed
Holden-Dye, L., Krogsgaard-Larsen, P., Nielsen, L. & Walker, R. J. (1989). GABA receptors on the somatic muscle cells of the parasitic nematode Ascaris suum: Stereoselectivity indicates similarity to a GABA-A agonist recognition site. British Journal of Pharmacology 48, 841–50.CrossRefGoogle Scholar
Holden-Dye, L. & Walker, R. J. (1990). Classical GABA and glycine receptor antagonists preferentially block the response to acetylcholine in the nematode Ascaris. Neuroscience Letters. Suppl. 38, 5111.Google Scholar
Hollman, M., O'Shea-Greenfield, A., Rogers, S. W. & Heinemann, S. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature, London 342, 643–8.CrossRefGoogle Scholar
Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. E. & Evans, P. D. (1982). Serotonin and octopamine in the nematode, Caenorhabditis elegans. Science. 216, 1012–14.CrossRefGoogle ScholarPubMed
House, C. R. (1973). An electrophysiological study of neuroglandular transmission in the isolated salivary glands of the cockroach. Journal of experimental Biology. 58, 2943.CrossRefGoogle Scholar
Hucho, F., Oberthur, W. & Lottspeich, F. (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MII of the receptor subunits. FEBS Letters 205, 137–42.CrossRefGoogle Scholar
Johnson, C. D. & Stretton, A. O. W. (1985). Localization of choline acetyltransferase with identified motoneurones of the nematode, Ascaris. Journal of Neuroscience 5, 1984–92.CrossRefGoogle ScholarPubMed
Johnson, C. D. & Stretton, A. O. W. (1987). GABA-like immunoreactivity in inhibitory motor neurones of the nematode, Ascaris. Journal of Neuroscience 7, 223–35.CrossRefGoogle Scholar
Joho, R. H., Moorman, J. R., Dongen, A. M. J.Van, Kirsch, G. E., Silberberg, H., Schuster, G. & Brown, A. M. (1990). Toxin and kinetic profile of rat brain type III sodium channels expressed in Xenopus oocytes. Molecular Brain Research 7, 105–13.CrossRefGoogle ScholarPubMed
Judge, S. E., Kerkut, G. A. & Walker, R. J. (1977). Properties of an identified synaptic pathway in the visceral ganglion of Helix aspersa. Comparative Biochemistry and Physiology 57C, 101–6.Google ScholarPubMed
Juorio, A. V. & Robertson, H. A. (1977). Identification and distribution of some monoamines in tissues of the sunflower star, Pyconopodia hellanthoides (Echinodermata). Journal of Neurochemistry 28, 573–9.CrossRefGoogle ScholarPubMed
Kandel, E. R., Frazier, W. T., Waziri, R. & Coggeshall, R. E. (1967). Direct and common connections among identified neurones in Aplysia. Journal of Neurophysiology 30, 1352–76.CrossRefGoogle ScholarPubMed
Katz, P. S. & Harris-Warrick, R. M. (1990). Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. Journal of Neuroscience 10, 1495–512.CrossRefGoogle ScholarPubMed
Keenan, C. L. & Koopowitz, H. (1982). Physiology and in situ identification of putative aminergic neurotransmitters in the nervous system of Gyrocotyle fimbriata, a parasitic flatworm. Journal of Neurobiology 13, 921.CrossRefGoogle ScholarPubMed
Keenan, C. L. & Koopowitz, H. (1984). Ionic basis of action potentials in identified flatworm neurones. Journal of Comparative Physiology A. 155, 197208.CrossRefGoogle Scholar
Kisiel, M. J., Deubert, K. H. & Zuckermann, B. M. (1976). Biogenic amines in the free-living nematode Caenorhabditis briggsae. Experimental Aging Research 2, 3744.CrossRefGoogle Scholar
Klemm, N. (1985). The distribution of biogenic monoamines in invertebrates. In Neurobiology: Comparative Aspects of Aminergic Neurons, pp. 280–96, (ed. Gilles, R. & Balthazer, J.). Berlin: Springer.CrossRefGoogle Scholar
Klemm, N. & Axelsson, S. (1973). Determination of dopamine, noradrenaline and 5-hydroxytryptamine in the cerebral ganglia of the desert locust, Schistocerca gregaria Forsk. (Insecta. Orthoptera). Brain Research 57, 289–98.CrossRefGoogle Scholar
Knock, S. L., Nagle, G. T., Lin, C-Y., Mcadoo, D. J. & Kurosky, A. (1989). II. Aplysia brasiliana neurones R-3/R-14: Primary structure of the myoactive histidinerich basic peptide and its prohormone. Peptides 10, 859–67.CrossRefGoogle Scholar
Koopowitz, H. & Keenan, L. (1982). The primitive brains of platyhelminthes. Trends in Neuroscience 5, 77–9.CrossRefGoogle Scholar
Korn, H., Sotelo, C. & Crepel, F. (1983). Electrotonic coupling between neurons in rat lateral vestibular nucleus. Experimental Brain Research 16, 255–75.Google Scholar
Kravitz, E. A., Beltz, B. S., Glusman, S., Goy, M. F., Harris-Warrick, R. M., Johnston, M., Livingstone, M. S., Schwartz, T. & Siwicki, K. K. (1985). The well modulated lobster: the roles of serotonin, octopamine and proctolin in the lobster nervous system. In Model Neurol Networks and Behaviour (ed. Selverston, A.), pp. 339360. New York: Plenum Press.CrossRefGoogle Scholar
Kravitz, E. A., Glusman, S., Harris-Warrick, R. M., Livingstone, M. S., Schwartz, T. & Goy, M. F. (1980). Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies. Journal of experimental Biology 89, 159–75.CrossRefGoogle Scholar
Kupfermann, I. & Weiss, K. R. (1981). The role of serotonin in arousal of feeding behaviour of Aplysia. In Serotonin Neurotransmission and Behaviour, (ed. Jacobs, B. L. & Gelperin, A.), pp. 255287; Cambridge, Mass: MIT Press.Google Scholar
Kuroki, Y., Kanda, T., Kubota, I., Fujisawa, Y., Ikeda, T., Miura, A., Minamitake, Y. & Muneoka, Y. (1990) A molluscan neuropeptide related to crustacean hormone, RPCH. Biochemical Biophysical Research Communications 167, 273–9.CrossRefGoogle ScholarPubMed
Leach, L., Trudgill, D. L. & Gahan, P. B. (1987). Immunocytochemical localization of neurosecretory amines and peptides in the free-living nematode, Goodeyus ulmi. Histochemical Journal 19, 471–5.CrossRefGoogle ScholarPubMed
Leake, L. D. & Walker, R. J. (1980). Invertebrate Neuropharmacology. Glasgow: Blackie.Google Scholar
Lee, M. B., Bueding, E. & Schiller, E. L. (1978). The occurrence and distribution of 5-HT in Hymenolepis diminuta and H. nana. Journal of Parasitology 64, 257–64.CrossRefGoogle ScholarPubMed
Lees, G., Beadle, D. J., Neumann, R. & Benson, J. A. (1987). Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazepine and a barbiturate. Brain Research 401, 267–78.CrossRefGoogle Scholar
Leroith, D., Roberts, C., Lesniak, M. A. & Roth, J. (1986). Receptors for intercellular messenger molecules in microbes: Similarities to vertebrate receptors and possible implications for diseases in man. Experientia 42, 782–8.CrossRefGoogle ScholarPubMed
Leroith, D., Shiloach, J., Berelowitz, M., Frohman, L. A., Liotta, A. S., Krieger, D. T. & Roth, J. (1983). Are messenger molecules in microbes the ancestors of the vertebrate hormones and tissue factors. Federation Proceedings 42, 2602–7.Google Scholar
Li, C. & Calabrese, R. L. (1987). FMRFamide-like substances in the leech. III. Biochemical characterization and physiological effects. Journal of Neuroscience 7, 595603.CrossRefGoogle ScholarPubMed
Liebeswar, G., Goldman, J. E., Koeste, J. & Mayeri, E. (1975). Neural control of circulation in Aplysia III. Neurotransmitters. Journal of Neurophysiology 38, 769–79.CrossRefGoogle ScholarPubMed
Llinas, R., Baker, R. & Sotelo, C. (1974). Electronic coupling between neurons in the cat inferior olive. Journal of Neurophysiology 37, 560–1.CrossRefGoogle Scholar
Lloyd, P. E. (1982). Cardioactive neuropeptides in gastropods. Federation Proceedings of the Federated American Society of Experimental Biology 41, 2948–52.Google ScholarPubMed
Lloyd, P. E., Frankfurt, M., Stevens, P., Kupfermann, I. & Weiss, K. R. (1987). Biochemical and immunocytochemical localization of the neuropeptides FMRFamide, SCP-A, SCP-B, to neurons involved in the regulation of feeding in Aplysia. Journal of Neuroscience 7, 1123–32.CrossRefGoogle Scholar
Luetje, C. W., Patrick, J. & Seguela, P. (1990). Nicotine receptors in the mammalian brain. FASEB Journal 4, 27532760.CrossRefGoogle ScholarPubMed
Lummis, S. C. R. & Sattelle, D. B. (1985). Binding of N-[Propionyl-3H] propionylated α-bungarotoxin and L - [benzilic-4,4-3H] quinuclidinyl bezilate to CNS extracts of the cockroach, Periplaneta americana. Comparitive Biochemistry and Physiology 80C, 7583.Google Scholar
Lutz, E. M. & Tyrer, N. M. (1988). Immunohistochemical localization of serotonin and choline acetyltransferase in sensory neurons of the locust. Journal of Comparative Neurology 267, 335–42.CrossRefGoogle ScholarPubMed
Mccaman, M. W. (1986). Uptake and metabolism of [3H]adenosine by Aplysia ganglia and by individual neurons. Journal of Neurochemistry 47, 1026–31.CrossRefGoogle ScholarPubMed
Mccaman, R. E. & Weinreich, D. (1985). Histaminergic synaptic transmission in the cerebral ganglion of Aplysia. Journal of Neurophysiology 53, 1016–37.CrossRefGoogle ScholarPubMed
Machado, C. R. S., Machado, A. B. M. & Pellegrino, J. (1972). Catecholamine-containing neurons in Schistosoma mansoni. Zeitschrift Zellforschung 124, 230–7.CrossRefGoogle ScholarPubMed
McKay, D. M., Halton, D. W., Allen, J. M. & fairweather, I. (1989). The effects of cholinergic and serotonergic drugs on motility in vitro of Haplometra cylindracea (Trematoda: Digenea). Parasitology 99, 241–52.CrossRefGoogle ScholarPubMed
Maddrell, S. H. P. & Phillips, J. E. (1975). Secretion of hypo-osmotic fluid by the lower Malpighian tubules of Rhodnius prolixus. Journal of experimental Biology 62, 671–3.CrossRefGoogle Scholar
Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica. Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed
Malherbe, P., Sigel, E., Baur, R., Persohn, E., Richards, J. G. & Mohler, H. (1990). Functional characteristics and sites of gene expression of the α1, β1, γ2-isoform of the rat GABA-A receptor. Journal of Neuroscience 10, 2330–7.CrossRefGoogle Scholar
Mancillas, J. R., McGinty, J. F., Selverston, A. I., Karten, H. & Bloom, F. E. (1981). Immunocytochemical localization of enkephalin and Substance P in retina and eyestalk neurones of lobster. Nature, London 293, 576–8.CrossRefGoogle ScholarPubMed
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google ScholarPubMed
Marder, E. (1976). Cholinergic motoneurones in the stomatogastric system of the lobster. Journal of Physiology 257, 6386.CrossRefGoogle ScholarPubMed
Marder, E. E., Hooper, S. L. & Eisen, J. S. (1987). Multiple neurotransmitters provide a mechanism for the production of multiple outputs from a single neuronal circuit. In Synaptic Function (ed. Edelman, G. M., Gall, W. E. & Cowman, W. M.), pp. 305327. New York: Wiley.Google Scholar
Jais, A. M.Mat, Sharma, R., Pedder, S., Kubota, I., Muneoka, Y. & Walker, R. J. (1990). The actions of the Catch Relaxing Peptide, CARP, on identified Helix central neurones. Comparative Biochemistry and Physiology (in the Press).Google Scholar
Maue, R. A., Kraner, S. D., Goodman, R. H. & Mandel, G. (1990). Neuron-specific expression of the rat brain Type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223–31.CrossRefGoogle ScholarPubMed
Mayeri, E., Koester, J., Kupferman, I., Liebeswar, G. & Kandel, E. R. (1974). Neural control of circulation in Aplysia. I. Motoneurones. Journal of Neurophysiology 37, 458–75.CrossRefGoogle Scholar
Moore, G. J., Thornhill, J. A., Gill, V., Lederis, K. & Lukowiak, K. (1981). An arginine vasotocin-like neuropeptide is present in the nervous system of the marine mollusc Aplysia californica. Brain Research 206, 213–18.CrossRefGoogle ScholarPubMed
Morton, D. B. & Evans, P. D. (1984). Octopamine release from an identified neurone in the locust. Journal of experimental Biology 113, 269–87.CrossRefGoogle Scholar
Nambu, J. R., Murphy-Erdosh, C., Andrews, P. C., Feistner, G. J. & Scheller, R. H. (1988). Isolation and characterization of a Drosophila neuropeptide gene. Neuron 1, 5561.CrossRefGoogle ScholarPubMed
Nassel, D. R. (1988). Serotonin and serotonin-immunoreactive neurons in nervous system of insects. Progress in Neurobiology 30, 185.CrossRefGoogle ScholarPubMed
Nassel, D. R., Mayer, E. P. & Klemm, N. (1985). Mapping and ultrastructure of serotonin-immunoreactive neurons in the optic lobes of three insect species. Journal of Comparative Neurology 232, 190204.CrossRefGoogle ScholarPubMed
Niewiadomska, K. & Moczon, T. (1982). The nervous system of Diplostomum pseudospathaceum Niewiadomska, (Digenea, Diplostomatidae): I. Nervous system and caetotaxy in the cercaria. Zeitschrift für Parasitenkunde 68, 295304.CrossRefGoogle Scholar
Nistri, A. (1985). Glutamate. In Neurotransmitter Actions in the Vertebrate Central Nervous System, pp. 101123, (ed. Rogawski, M. A. & Barker, J. L.). New York: Plenum Press.CrossRefGoogle Scholar
Noda, M., Shimizu, A., Tanabe, T., Takai, T., Kanyano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, London 312, 121–7.CrossRefGoogle ScholarPubMed
Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikoyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature, London 302, 528–32.CrossRefGoogle ScholarPubMed
Numa, S., Noda, M., Takahashi, H., Tanabe, T., Toyasato, M., Furatani, Y. & Kikyotani, S. (1983). Molecular structure of the nicotinic acetylcholine receptor. Cold Spring Harbor Symposia of Quantitative Biology 48, 5769.CrossRefGoogle ScholarPubMed
O'Connor, E. F., Watson, W. H. & Wyse, G. A. (1982). Identification and localization of catecholamines in the nervous system of Limulus polyphemus. Journal of Neurobiology 13, 4960.CrossRefGoogle ScholarPubMed
O'Donohue, T. L., Millington, W. R., Handelmann, G. E., Contreras, P. C. & Chronwall, B. M. (1985). On the 50th aniversary of Dale's law: multiple neurotransmitter neurons. Trends in Pharmacology 6, 305–8.CrossRefGoogle Scholar
Olsen, R. W. & Tobin, A. J. (1990). Molecular biology of GABA-A receptors. FASEB Journal 4, 1469–80.CrossRefGoogle Scholar
Ono, J. K. (1989). Synaptic connections in the buccal ganglia of Aplysia mediated by an identified neuron containing a CCK/gastrin-like peptide co-localised with acetylcholine. Brain Research 493, 212–24.CrossRefGoogle Scholar
Orchard, I. (1987). Adipokinetic hormone - an update. Journal of Insect Physiology 33, 451–63.CrossRefGoogle Scholar
Orido, y. (1989). Histochemical evidence of the catecholamine-associated nervous system in certain schistosome cercariae. Parasitology Research 76, 146–9.CrossRefGoogle ScholarPubMed
Osborne, N. N. (1984). Phenylethanolamine-N-methyl-transferase and dopamine-β-hydroxylase immunoreactivity and the occurrence of noradrenaline and adrenaline in the nervous system of the snail, Helix aspersa. Cell and Tissue Research 237, 605–8.CrossRefGoogle Scholar
O'Shea, M. & Bishop, C. A. (1982). Neuropeptide proctolin associated with an identified skeletal motoneuron. Journal of Neuroscience 2, 1242–51.CrossRefGoogle ScholarPubMed
Penzlin, H. (1989). Neuropeptides - Occurrence and functions in insects. Naturwissenschaften 76, 243–52.CrossRefGoogle ScholarPubMed
Price, D. A. (1986). The evolution of a molluscan cardioregulatory neuropeptide. American Zoologist 26, 1007–15.CrossRefGoogle Scholar
Price, D. A., Davies, N. W., Doble, K. E. & Greenberg, M. J. (1987). The variety and distribution of the FMRFamide-related peptides in molluscs. Zoological Science 4, 395410.Google Scholar
Price, D. A. & Greenberg, M. J. (1977). Structure of a molluscan cardioexcitatory neuropeptide. Science 197, 670–1.CrossRefGoogle ScholarPubMed
Ramirez, J-M. & Orchard, I. (1990). Octopaminergic modulation on the forewing stretch receptor in the locust Locusta migratoria. Journal of experimental Biology 149, 255–79.CrossRefGoogle Scholar
Ramoa, A. S., Alkondon, M., Arcava, Y., Irons, J., Lunt, G. G., Deshpande, S. S., Wonnacott, S., Aronstam, R. S. & Albuquerque, E. X. (1990). The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. Journal of Pharmacology and Experimental Therapeutics 254, 7182.Google ScholarPubMed
Retzlafe, E. J. (1957). Mechanisms of Mauthner cells. Journal of Comparative Neurology 107, 209–25.Google Scholar
Reuter, M., Darhi, T. & Schot, L. P. C. (1984). Immunocytochemical demonstration of peptidergic neurons in the central and peripheral nervous systems of the flatworm, Microstomum lineare with antiserum to FMRFamide. Cell and Tissue Research 238, 431–6.CrossRefGoogle ScholarPubMed
Ribeiro, P. & Webb, R. A. (1983 a) The synthesis of 5-hydroxytryptamine from tryptophan and 5-hydroxytryptophan in the cestode Hymenolepis diminuta. International Journal for Parasitology 13, 101–6.CrossRefGoogle ScholarPubMed
Ribeiro, P. & Webb, R. A. (1983 b). The occurrence and synthesis of octopamine and catecholamines in the cestode Hymenolepis diminuta. Molecular and Biochemical Parasitology 7, 5362.CrossRefGoogle ScholarPubMed
Robb, S. & Evans, P. D. (1990). FMRFamide-like peptides in the locust: Distribution, partial characterization and bioactivity. Journal of experimental Biology 149, 335–60.CrossRefGoogle ScholarPubMed
Robb, S., Packman, L. C. & Evans, P. D. (1989). Isolation, primary structure and bioactivity of SchistoFLRFamide, a FMRFamide-like neuropeptide from the locust, Schistocerca gregaria. Biochemical and Biophysical Research Communications 160, 850–6.CrossRefGoogle Scholar
Roberts, C. J., Radley, T., Poat, J. A. & Walker, R. J. (1983). Occurrence of noradrenaline, dopamine and 5-hydroxytryptamine in the nervous system of the horseshoe crab, Limulus polyphemus. Comparative Biochemistry and Physiology 74C, 437–40.Google Scholar
Roberts, E. (1986). GABA: The road to neurotransmitter status. In Benzodiazepine/GABA Receptors and Chloride Channels - Structural and Functional Properties, pp 139, (ed. Olsen, R. W. & Venter, J. C.) New York: Alan R. Liss, Inc.Google Scholar
Rogawski, M. A. (1985). Norepinephrine. In Neurotransmitter Actions in the Vertebrate Central Nervous System, pp. 241–84, (ed. Rogawski, M. A. & Barker, J. L.) New York: Plenum Press.CrossRefGoogle Scholar
Rozental, R., Scoble, G. T., Albuquerque, E. X., Idriss, M., Sherby, S., Sattelle, D. B., Nakanishi, K., Konno, K., Eldefrawi, A. T. & Eldefrawi, M. E. (1989). Allosteric inhibition of nicotinic acetylcholine receptor of vertebrates and insects by philanthotoxin. Journal of Pharmacology and Experimental Therapeutics 249, 123–9.Google ScholarPubMed
Sargent, P. B. (1977). Synthesis of acetylcholine by excitatory motoneurones in the central nervous system of the leech. Journal of Neurophysiology 40, 553–60.CrossRefGoogle ScholarPubMed
Sathanan, A. H. & Burnstock, G. (1976). Evidence for a non-cholinergic, non-aminergic innervation of the Venus clam heart. Comparative Biochemistry and Physiology 55C, 111–18.Google Scholar
Sattelle, D. B. (1985). Acetylcholine receptors. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 11, pp. 395–434, (ed. Kerkut, G. A. & Gilbert, L. I.) Oxford: Pergamon Press.Google Scholar
Sattelle, D. B. (1990). GABA receptors of insects. Advances in Insect Physiology 22, 1113.CrossRefGoogle Scholar
Sattelle, D. B., Pinnock, R. D., Wafford, K. A. & David, J. A. (1988). GABA receptors on the cell body membrane of an identified insect motor neuron. Proceedings of the Royal Society, London B, 232, 443–56.Google ScholarPubMed
Sawada, M. & Caggeshall, R. E. (1976). Ionic mechanism of 5-hydroxtryptamine-induced hyperpolarization and inhibitory junctional potential in bodywall muscle cells of Hirudo medicinalis. Journal of Neurobiology 7, 6373.CrossRefGoogle Scholar
Sawada, M., Gibson, D. & Mcadoo, D. J. (1984 a). L-Glutamate acid, a possible neurotransmitter to anterior aorta of Aplysia. Journal of Neurophysiology 51, 375–86.CrossRefGoogle ScholarPubMed
Sawada, M., Mcadoo, D. J., Ichinose, M. & Price, C. H. (1984 b). Influence of glycine and neuron R-14 on contraction of the anterior aorta of Aplysia. Japanese Journal of Physiology 34, 747–67.Google Scholar
Schilt, J., Richoux, J-P. & Dubois, M. P. (1981). Demonstration of peptides immunologically related to vertebrate neurohormones in Dugesia lugubris (Turbellaria: Tricladida). General and Comparative Endocrinology 43, 331–5.CrossRefGoogle ScholarPubMed
Schlesinger, D. H., Babirak, S. B. & Blankenship, J. E. (1981). Primary structure of an egg laying peptide from the atrial gland of Aplysia californica. In Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides, (ed. Schlesinger, D. H.) pp. 138150. North Holland, Amsterdam.Google Scholar
Schofield, P. R. (1989). The GABA-A receptor: molecular biology reveals a complex picture. Trends in Pharmacological Science 10, 476–8.CrossRefGoogle ScholarPubMed
Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriquez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H. & Barnard, E. A. (1987). Sequence and functional expression of the GABA-A receptor shows a ligand-gated receptor super-family. Nature, London 328, 211–27.CrossRefGoogle Scholar
Schwartz, R. D. & Mindlin, M. C. (1988). Inhibition of the GABA receptor-gated chloride ion channel in brain by noncompetitive inhibitors of the nicotinic receptor-gated cation channel. Journal of Pharmacology and Experimental Therapeutics 244, 963–70.Google ScholarPubMed
Shepherd, G. M. (1988). Neurobiology. 2nd Edn. Oxford: Oxford University Press.Google Scholar
Shinozaki, H. (1980). The pharmacology of the excitatory neuromuscular junction in the crayfish. Progress in Neurobiology 14, 121–55.CrossRefGoogle ScholarPubMed
Simmons, P. J. & Hardie, R. C. (1988). Evidence that histamine is a neurotransmitter of photoreceptors in the locust ocellus. Journal of experimental Biology 138, 205–19.CrossRefGoogle Scholar
Sithigorngul, P., Stretton, A. O. W. & Cowden, C. (1990). Neuropeptide diversity in Ascaris: An immunocytochemical study. Journal of Comparative Neurology 294, 362–76.CrossRefGoogle ScholarPubMed
Siwicki, K. K., Beltz, B. S. & Kravitz, E. A. (1987). Proctolin in identified serotonergic, dopaminergic and cholinergic neurons in the lobster, Homarus americanus. Journal of Neuroscience 7, 522–32.CrossRefGoogle ScholarPubMed
Siwicki, K. K. & Bishop, C. A. (1986). Mapping of proctolin-like immunoreactivity in the nervous systems of lobster and crayfish. Journal of Comparative Neurology 243, 435–53.CrossRefGoogle Scholar
Sombati, S. & Hoyle, G. (1984). Glutamergic central nervous transmission in locusts. Journal of Neurobiology 15, 507–76.CrossRefGoogle Scholar
Smith, C. U. M. (1989). Elements of Molecular Neurobiology. Chichester: John Wiley.Google Scholar
Stone, B. F., Binnington, K. C. & Neish, A. L. (1978). Norepinephrine as principal catecholamine in a specific neurone of an invertebrate. Experientia 34, 1173–4.CrossRefGoogle Scholar
Stone, T. W. (1989). Purine receptors and their pharmacological roles. Advances in Drug Research 18, 292429.Google Scholar
Sulston, J., Dew, M. & Brenner, S. (1975). Dopaminergic neurons in the Nematode Caenorhabditis elegans. Journal of Comparative Neurology 163, 215–26.CrossRefGoogle ScholarPubMed
Swann, J. W. & Carpenter, D. O. (1975). Organisation of receptors for neurotransmitters on Aplysia neurons. Nature, London 258, 751–4.CrossRefGoogle Scholar
Takeuchi, A. & Takeuchi, N. (1964). The effect of crayfish muscle of iontophoretically applied glutamate. Journal of Physiology 170, 296317.CrossRefGoogle ScholarPubMed
Takeuchi, A. & Takeuchi, N. (1966). A study of the inhibitory action of γ-aminobutyric acid in neuromuscular transmission in the crayfish. Journal of Physiology 183, 418–32.CrossRefGoogle ScholarPubMed
Thornhill, J. A., Lukowiak, K., Cooper, K. E. & Veale, W. L. (1981). Arginine vasotocin, an endogenous neuropeptide of Aplysia suppresses the gill withdrawal reflex and reduces the evoked synaptic input to central gill motor neurons. Journal of Neurobiology 12, 533–44.CrossRefGoogle Scholar
Tomosky-Sykes, T. K., Jardine, I., Jueller, J. F & Bueding, E. (1977). Sources of error in neurotransmitter analysis. Analytical Biochemistry 83, 99108.CrossRefGoogle ScholarPubMed
Toyoshima, C. & Unwin, N. (1988). Ion channel acetylcholine receptor reconstruction from images of postsynaptic membranes. Nature, London 336, 247–50.CrossRefGoogle ScholarPubMed
Trimmer, B. A., Kobierski, L. A. & Kravitz, E. A. (1987). Purification and characterization of FMRFamide-like immunoreactive substances from the lobster nervous system: isolation and sequence analysis of two closely related peptides. Journal of Comparative Neurology 266, 1626.CrossRefGoogle Scholar
Tritt, S. H. & Bryne, J. H. (1982). Neurotransmitters producing and modulating opaline gland contraction in Aplysia californica. Journal of Neurophysiology 48, 1347–61.CrossRefGoogle ScholarPubMed
Turner, J. D. & Cottrell, G. A. (1977). Properties of an identified histamine-containing neurone. Nature, London 267, 447–8.CrossRefGoogle ScholarPubMed
Usherwood, P. N. R. & Cull-Candy, S. G. (1975). Pharmacology of somatic nerve muscle synapses. In, Insect Muscle (ed. Usherwood, P. N. R.), pp. 207280, London: Academic Press.Google Scholar
Usherwood, P. N. R. & Grundfest, H. (1964). Inhibitory postsynaptic potentials in grasshopper muscle. Science 143, 817–18.CrossRefGoogle ScholarPubMed
Maelen, C. P.Vander (1985). Serotonin. In Neurotransmitter Actions in the Vertebrate Central Nervous System, pp. 201240 (ed. Rogawski, M. A. & Barker, J. L.). New York: Plenum Press.Google Scholar
Venter, J. C., Porzio, U.Di, Robinson, D. A., Shreeve, S. M., Lai, J., Kerlavage, A. R., Fracek, S. P., Lentes, K-U. & Fraser, C. M. (1988). Evolution of neurotransmitter receptor systems. Progress in Neurobiology 30, 105–69.CrossRefGoogle ScholarPubMed
Venturini, G., Carolei, A., Palladini, G., Margotta, V. & Lauro, M. G. (1983). Radioimmunological and immunocytochemical demonstration of methionine encephalin in planaria Dugesia gonocephala. Comparative Biochemistry and Physiology 74C, 23–6.Google Scholar
Venturini, G., Stocchi, F., Margotta, V., Ruggieri, S., Bravi, D., Bella, P. & Palladini, G. (1989). A pharmacological study of dopaminergic receptors in planaria. Neuropharmacology 28, 1377–82.CrossRefGoogle ScholarPubMed
Wachtel, H. & Kandel, E. R. (1971). Conversion of synaptic excitation to inhibition at a dual chemical synapse. Journal of Neurophysiology 34, 5668.CrossRefGoogle Scholar
Walker, R. J. (1986). Transmitters and modulators. In The Mollusca, vol. 9, pp. 279485, (ed. Willows, A. O. D.). Orlando: Academic Press.CrossRefGoogle Scholar
Walker, R. J., Boyd, P. J. & Osborne, N. N. (1987). Immunocytochemical and physiological studies involving Substance P (SP), Arg-Vasotocin (AVT) and FMRFamide on central neurones and other tissues of Helix aspersa. In Neurobiology: Molluscan Models; (ed. Boer, H. H., Geraerts, W. P. M. & Joosse, J.) Proceedings of the Second Symposium of Molluscan Neurobiology. Amsterdam: North-Holland.Google Scholar
Walker, R. J. & Holden-Dye, L. (1989). Commentary on the evolution of transmitters, receptors and ion channels in invertebrates. Comparative Biochemistry and Physiology 93A, 2539.CrossRefGoogle ScholarPubMed
Wang-Bennett, L. T., Sovan, M. L. & Glantz, R. M. (1988). Immunocytochemical studies of the distribution of acetylcholine in the crayfish brain. Journal of Comparative Neurology 273, 330–43.CrossRefGoogle ScholarPubMed
Watson, A. H. D. (1990). Ultrastructural evidence for GABAergic input onto cereal afferents in the locust (Locusta migratoria) Journal of experimental Biology 148, 509–15.CrossRefGoogle Scholar
Webb, R. A. (1985). The uptake and metabolism of 5-hydroxytryptamine by tissue slices of the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 80C, 305–12.Google ScholarPubMed
Webb, R. A. (1986). The uptake and metabolism of L-glutamate by tissue slices of the cestode Hymenolepis diminuta. Comparative Biochemistry and Physiology 85C, 161–2.Google ScholarPubMed
Webb, R. A. (1988). Endocrinology of Acoelomates. In Endocrinology of Selected Invertebrate Types, pp. 3162, (ed. Laufer, H. & Downer, R. G. H.). New York: Alan R. Liss. Inc.Google Scholar
Webb, R. A. & Eklove, H. (1989). Demonstration of intense glutamate-like immunoreactivity in the longitudinal nerve cords of the cestode, Hymenolepis diminuta. Parasitology Research 75, 545–8.CrossRefGoogle ScholarPubMed
Webb, R. A. & Mizukawa, K. (1985). Serotonin-like immunoreactivity in the cestode Hymenolepis diminuta. Journal of Comparative Neurology 234, 431–40.CrossRefGoogle Scholar
Welsh, J. H. & Moorhead, M. (1960). The quantitative distribution of serotonin in invertebrates, especially in their nervous system. Journal of Neurochemistry 6, 146–69.CrossRefGoogle Scholar
Werman, R., Davidoff, R. A. & Aprison, M. H. (1968). The inhibitory action of glycine on spinal neurons in the cat. Journal of Neurophysiology 31, 8195.CrossRefGoogle ScholarPubMed
Wikgren, M. C. & Reuter, M. (1985). Neuropeptides in a microturbellarian-whole mount-immunocytochemistry. Peptides 6, Suppl. 3, 471–5.CrossRefGoogle Scholar
Willett, J. D. (1980). Control mechanisms in Nematodes. In Nematodes as Biological Models, vol. 1, 197225, (ed. Zuckerman, B. M.). New York: Academic Press.Google Scholar
Willett, J. D., Turner, R. A., Mcrae, M. & Bollinger, J. A. (1979). Catecholamine sensitive adenylate cyclase activity during development and senescence in the nematode Panagrellus redivivus. Age 2, 126.Google Scholar
Wright, D. J. & Awan, F. A. (1978). Catecholaminergic structures in the nervous system of three nematode species, with observations on related enzymes. Journal of Zoology London 185, 477–89.CrossRefGoogle Scholar