Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T17:11:06.991Z Has data issue: false hasContentIssue false

Evidence for translational control of β-tubulin synthesis during differentiation of Leishmania donovani

Published online by Cambridge University Press:  06 April 2009

M. Bhaumik
Affiliation:
Genetic Engineering Laboratory, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Calcutta-700 032, India
S. Das
Affiliation:
Genetic Engineering Laboratory, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Calcutta-700 032, India
S. Adhya
Affiliation:
Genetic Engineering Laboratory, Leishmania Group, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Calcutta-700 032, India

Abstract

Tubulin biosynthesis was rapidly induced during transformation of the mammalian (amastigote) stage of the kinetoplastid parasite Leishmania donovani to flagellated promastigotes. However, transcription of β-tubulin genes occurred constitutively, as judged by nascent RNA synthesis in isolated nuclei and Northern blotting of steady-state mRNA. Two mRNA species of 2.2 and 2.4 kb were shared by the two cell-types, while a third 2.6 kb species, constituting about 20% of the total, was present in large amounts in promastigotes. RNase protection experiments demonstrated sequence micro-heterogeneity in the 5′-untranslated region, the pattern of which was identical in promastigotes and amastigotes. By primer extension assays, heterogeneity in the 5′-terminal cap structure of amastigote β-tubulin mRNA and differential pausing of reverse transcriptase within the mini-exon leader region were detected. These differences correlated with enhanced translational efficiency of tubulin mRNA from promastigotes in a rabbit reticulocyte lysate system. The results indicate that translational control plays a major role in tubulin induction during L. donovani differentiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhya, S., Das, S. & Bhaumik, M. (1990). Transcription and processing of β-tubulin messenger RNA in Leishmania donovani promastigotes. Journal of Biosciences 15, 249–59.CrossRefGoogle Scholar
Anketell, M. C. & Lagnado, J. R. (1983). Cytoskeletal proteins in bloodstream forms of Trypanosoma brucei. Biochemical Society Transactions 11, 783–4.CrossRefGoogle Scholar
Banerjee, A. K. (1980). 5′-Terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiological Reviews 44, 175205.CrossRefGoogle Scholar
Baum, S. G., Wittner, M., Nadler, J. P., Horwitz, S. B., Dennis, J. E., Schiff, P. B. & Tanowitz, H. B. (1981). Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proceedings of the National Academy of Sciences, USA 78, 4571–5.CrossRefGoogle ScholarPubMed
Bellofatto, V. & Cross, G. A. M. (1984). Expression of a bacterial gene in a trypanosomatid protozoan. Science 244, 1167–9.CrossRefGoogle Scholar
Bonner, W. M. & Laskey, R. A. (1974). A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46, 83–8.CrossRefGoogle ScholarPubMed
Chan, M. M.-Y. & Fong, D. (1990). Inhibition of Leishmanias but not host macrophages by the antitubulin herbicide trifluralin. Science 249, 924–6.CrossRefGoogle Scholar
Das, S. & Adhya, S. (1990). Organization and chromosomal localization of β-tubulin genes in Leishmania donovani. Journal of Biosciences 15, 239–48.CrossRefGoogle Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle ScholarPubMed
Fong, D. & Chang, K.-P. (1981). Tubulin biosynthesis in the developmental cycle of a parasite protozoan, Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proceedings of the National Academy of Sciences, USA 78, 7624–8.CrossRefGoogle ScholarPubMed
Fong, D. & Lee, B. (1988). Beta tubulin gene of the parasitic protozoan Leishmania mexicana. Molecular and Biochemical Parasitology 31, 97106.CrossRefGoogle ScholarPubMed
Fong, D., Wallach, M., Keithly, J., Melera, P. W. & Chang, K.-P. (1984). Differential expression of mRNAs for α- and β-tubulin during differentiation of the parasite protozoan Leishmania mexicana. Proceedings of the National Academy of Sciences, USA 81, 5782–6.CrossRefGoogle ScholarPubMed
Inoue, T. & Cech, T. R. (1985). Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: A technique for RNA structure analysis using chemical probes and reverse transcriptase. Proceedings of the National Academy of Sciences, USA 82, 648–52.CrossRefGoogle ScholarPubMed
Jaffe, C. L., Grimaldi, G. & McMahon-Pratt, D. (1984). The cultivation and cloning of Leishmania. In Genes and Antigens of Parasites, a Laboratory Manual (ed. Morel, C. M.), 2nd Edn, pp. 4791. Rio de Janiero: Fundacao Oswaldo Cruz.Google Scholar
Laban, A. & Wirth, D. F. (1989). Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. Proceedings of the National Academy of Sciences, USA 86, 9119–23.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Landfear, S. M. & Wirth, D. F. (1984). Control of tubulin gene expression in the parasitic protozoan Leishmania enriettii. Nature, London 309, 716–17.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, New York.Google Scholar
Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K. & Green, M. R. (1984). Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12, 7035–56.CrossRefGoogle ScholarPubMed
Merrick, W. C. (1983). Translation of exogenous mRNAs in reticulocyte lysates. Methods in Enzymology 101, 606–15.CrossRefGoogle ScholarPubMed
Murphy, W. J., Watkins, K. P. & Agabian, N. (1986). Identification of a novel Y branch structure as an intermediate in trypanosome mRNA processing. Evidence for trans splicing. Cell 47, 517–25.CrossRefGoogle ScholarPubMed
Palmiter, R. D. (1973). Ovalbumin messenger ribonucleic acid translation. Journal of Biological Chemistry 248, 2095–106.CrossRefGoogle ScholarPubMed
Perry, K. L., Watkins, K. P. & Agabian, N. (1987). Trypanosome mRNAs have unusual ‘cap 4’ structures acquired by addition of a spliced leader. Proceedings of the National Academy of Sciences, USA 84, 8190–4.CrossRefGoogle ScholarPubMed
Sutton, R. E. & Boothroyd, J. C. (1986). Evidence for trans splicing in trypanosomes. Cell 47, 527–35.CrossRefGoogle ScholarPubMed
Thomas, P. S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences, USA 77, 5201–5.CrossRefGoogle ScholarPubMed
Wallach, M., Fong, D. & Chang, K.-P. (1982). Post-transcriptional control of tubulin biosynthesis during leishmanial differentiation. Nature, London 299, 650–2.CrossRefGoogle ScholarPubMed
Youvan, D. C. & Hearst, J. E. (1979). Reverse transcriptase pauses at N2-methylguanosine during in vitro transcription of Escherichia coli 16S ribosomal RNA. Proceedings of the National Academy of Sciences, USA 76, 3751–54.CrossRefGoogle Scholar