Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T00:44:14.912Z Has data issue: false hasContentIssue false

Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense

Published online by Cambridge University Press:  06 April 2009

P. A. O. Majiva
Affiliation:
International Laboratory for Research on Animal Diseases (ILARAD), P. O. Box 30709, Nairobi, Kenya Vrije Universiteit Brussel, Paardenstaat 65, 1640 Sint-Genesius-Rode, Belgium
R. Hamers
Affiliation:
Vrije Universiteit Brussel, Paardenstaat 65, 1640 Sint-Genesius-Rode, Belgium
N. Van Meirvenne
Affiliation:
Laboratorium voor Serology, Instituut voor tropische Geneeskunde, Nationalestraat 155, 2000 Antwerp, Belgium
G. Matthyssens
Affiliation:
Vrije Universiteit Brussel, Paardenstaat 65, 1640 Sint-Genesius-Rode, Belgium

Summary

Genetic proximity between two karyotypic groups of Trypanosoma congolense was investigated using as hybridization probes: (i) total genomic DNA, (ii) a 35 nucleotide long synthetic oligonucleotide, and (iii) non-variant antigen type (non-VAT) specific complementary DNAs. The phylogenetic relationship between Trypanosoma brucei and T. evansi, both of which are accepted species in the subgenus Trypanozoon, was used as a reference to assess the phylogenetic proximity of the two groups of T. congolense. Results indicate that some morphologically indistinguishable T. congolense populations differ in a variety of molecular and genetic properties: molecular karyotypes, majority of the DNA sequences, and the restriction enzyme sites in the genomic environments of various conserved genes. The implications of these findings for trypanosome evolution and T. congolense epidemiology are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N. L., Parish, M. M., Richardson, J. P. & Pearson, T. W. (1985). Comparison of African trypanosomes of different antigenic phenotypes, subspecies and life cycle stages by two dimensional gel electrophoresis. Molecular and Biochemical Parasitology 16, 299314.CrossRefGoogle ScholarPubMed
Barbet, A. F., Davis, W. C. & Mcguire, T. C. (1982). Cross-neutralization of two different trypanosome populations derived from a single organism. Nature, London 300, 453–6.CrossRefGoogle ScholarPubMed
Broden, A. (1904). Les infections à trypanosomes au Congo chez I'homme et les animaux. Bulletin de la Société des Ètudes coloniales. (Brussels) 02.Google Scholar
Barry, J. D. & Gathuo, H. (1984). Antigenic variation in Trypanosoma vivax: isolation of a serodeme. Parasitology 89, 4958.CrossRefGoogle ScholarPubMed
Boothroyd, J. C. & Cross, G. A. M. (1982). Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short identical exon at their 5' end. Gene 20, 281–9.CrossRefGoogle Scholar
Carle, F. G. & Olson, M. V. (1984). Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Research 12, 5647–64.CrossRefGoogle ScholarPubMed
De Lange, T., Berkvens, T. M. M., Veerman, H. J. G., Frasch, A. C. C., Barry, J. D. & Borst, P. (1984 a). Comparison of the genes coding for the common 5′ terminal of messenger RNAs in three trypanosome species. Nucleic Acids Research 12, 4431–43.CrossRefGoogle ScholarPubMed
De Lange, T., Michels, P. A. M., Veerman, H. J. G., Cornelissen, A. W. C. A. & Borst, P. (1984 b). Many trypanosome messenger RNAs share a common 5′ terminal sequence. Nucleic Acids Research 12, 3777–90.CrossRefGoogle Scholar
Dvorak, J. A., Hall, T. E., CraneJ. St, M. J. St, M., Engel, J. C., Mcdaniel, J. & Uriegas, R. (1982). Trypanosoma cruzi: Flow cytometric analysis of total DNA/organism by means of mithramyein-induced fluorescence. Journal of Protozoology 29, 430–7.CrossRefGoogle ScholarPubMed
Grab, D. G. & Bwayo, J. J. (1982). Isopycnic isolation of African trypanosomes on Percoll gradient formed in situ. Acta Tropica 39, 363–5.Google ScholarPubMed
Godfrey, D. G. (1961). Types of Trypanosoma congolense. II. Differences in the courses of infection. Annals of Tropical Medicine and Parasitology 55, 154–66.CrossRefGoogle ScholarPubMed
Godfrey, D. G. (1982). Diversity within Trypanosoma congolense. In Perspectives in Trypanosomiasis Research (ed. Baker, J. R.), pp. 3746. London: John Wiley.Google Scholar
Grunstein, M. & Hogness, D. (1975). Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene. Proceedings of the National Academy of Sciences, USA 72, 3961–5.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1970). Systematic description of the mammalian trypanosomes of Africa. In The African Trypanosomiases (ed. Mulligan, H. W.), pp. 2459. London: George Allen and Unwin.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals: A Zoological Monograph. Oxford: Blackwell Scientific Publications.Google Scholar
Kemp, D. J., Corcoran, L. M. M., Coppel, R. L. M., Stahl, H. P., Bianco, A. E., Brown, G. V. & Anders, R. F. (1985). Size variationinchromosomes fromindependent culturedisolates of Plasmodium falciparum. Nature, London 315, 347–50.CrossRefGoogle ScholarPubMed
Lanham, S. M. & Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology 28, 521–31.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, V. M., Hamers, R. & Matthyssens, G. (1985 a). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. EMBO Journal 4, 3307–13.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Matthyssens, G., Williams, R. O. & Hamers, R. (1985 b). Cloning and analysis of Trypanosoma (Nannomonas) congolense ILNat 2.1 VSG gene. Molecular and Biochemical Parasitology 16, 97108.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory.Google Scholar
Massamba, N. N. & Williams, R. O. (1984). Distinction of African trypanosome species using nucleic acid hybridization. Parasitology 88, 5565.CrossRefGoogle ScholarPubMed
Nelson, R. G., Parsons, M., Selkirk, M., Newport, G., Barr, P. J. & Agabian, N. (1984). Sequences homologous to variant antigen mRNA spliced leader in Trypanosomatidae which do not undergo antigenic variation. Nature, London 308, 665–7.CrossRefGoogle Scholar
O'Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E. & Benveniste, R. E. (1985). A molecular solution to the riddle of the giant panda's phylogeny. Nature, London 317, 140–4.CrossRefGoogle Scholar
Post, R. J. (1985). DNA probes for vector identification. Parasitology Today 1, 8990.CrossRefGoogle ScholarPubMed
Rigby, P. W. J., Dickmann, M., Rhodes, C. & Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase: I. Journal of Molecular Biology 113, 237–51.CrossRefGoogle ScholarPubMed
Schwatz, J. H. (1984). The evolutionary relationships of man and orang-utans. Nature, London 308, 501–5.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by get electrophoresis. Journal of Molecular Biology 98, 501–17.CrossRefGoogle Scholar
Spithill, T. W. & Samaras, N. (1985). The molecular karyotypes of Leishmania major and mapping of alpha and beta tubulin gene families to multiple unlinked chromosomal loci. Nucleic Acids Research 13, 4155–69.CrossRefGoogle ScholarPubMed
Strachan, T., Webb, D. & Dover, G. (1985). Transition stages of molecular drive in multi-copy DNA families in Drosophila. EMBO Journal 4, 1701–8.CrossRefGoogle Scholar
Thomas, P. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences, USA 77, 5201–5.CrossRefGoogle ScholarPubMed
Van der Ploeg, L. T. H., Liu, A. Y. C., Michels, P. A. M., De Lange, T., Borst, P., Majumder, H. K., Weber, H., Veeneman, G. H. & Van Boom, J. (1982). RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Research 10, 3591–604.CrossRefGoogle ScholarPubMed
Van der Ploeg, L. T. H., Schwatz, D. C., Cantor, C. R. & Borst, P. (1984). Antigenic variation in Trypanosoma brucei analysed by electrophoretic separation of chromosome-sized DNA molecules. Cell 37, 7784.CrossRefGoogle Scholar
Van der Ploeg, L. T. H., Smits, M., Ponnudurai, T., Vermeulen, A., Meuwissen, J. H. E. T. & Langsley, G. (1985). Chromosome-sized DNA molecules of Plasmodium falciparum. Science 229, 658–61.CrossRefGoogle ScholarPubMed
Vervoort, T., Barbet, A. F., Musoke, A. J., Magnus, E., Mpimbaza, G. & Van Meirvenne, N. (1981). Isotypic surface glycoproteins of trypanosomes. Immunology 44, 223–32.Google ScholarPubMed
Wahl, G. M., Stern, M. & Stark, G. R. (1979). Efficient transfer of large DNA fragments from agarose gels to diazobenzyl oxymethyl-paper andrapid hybridization using dextran sulfate. Proceedings of the National Academy of Sciences, USA 76, 3683–7.CrossRefGoogle Scholar
Watterson, G. A. (1985). The genetic divergence of two populations. Theoretical Population Biology 27, 298317.CrossRefGoogle Scholar
Williams, R. O., Young, J. R., Majiwa, P. A. O., Doyle, J. J. & Shapiro, S. Z. (1981). Contextural genomic rearrangements of variable antigen genes in Trypanosoma brucei. Cold Spring Harbor Symposia on Quantitative Biology 45, 945–9.CrossRefGoogle ScholarPubMed
World Health Organization (1979). The African trypanosomiases: WHO Technical Report Series, no. 6351, pp. 12. Geneva: World Health Organization.Google Scholar
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed