Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:33:33.703Z Has data issue: false hasContentIssue false

Evasion of the oxidative microbicidal activity of human monocytes by trypomastigotes of Trypanosoma dionisii

Published online by Cambridge University Press:  06 April 2009

Kareen J. I. Thorne
Affiliation:
Strangeways Research Laboratory, Worts' Causeway, Cambridge CB1 4RN
Audrey M. Glauert
Affiliation:
Strangeways Research Laboratory, Worts' Causeway, Cambridge CB1 4RN
Rosamund J. Svvennsen
Affiliation:
2Department of Pathology, University of Cambridge, Cambridge CB2 1QP
H. Thomas
Affiliation:
2Department of Pathology, University of Cambridge, Cambridge CB2 1QP
Jane Morris
Affiliation:
2Department of Pathology, University of Cambridge, Cambridge CB2 1QP
D. Franks
Affiliation:
2Department of Pathology, University of Cambridge, Cambridge CB2 1QP

Summary

Trypomastigotes of Trypanosoma dionisii, a stercorarian trypanosome from bats, are effectively killed by neutrophils from human peripheral blood but are less sensitive to the cytotoxic action of human monocytes. The mechanism of killing appears to involve peroxidase and hydrogen peroxide. Trypomastigotes are as effective as epimastigotes in inducing the formation of hydrogen peroxide by effector cells. They are, however, less sensitive than epimastigotes to the cytotoxic effect of peroxidase and hydrogen peroxide. They are therefore susceptible to the high concentrations of peroxidase found in the phagosome of the neutrophil, but resist the lower levels encountered in monocytes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, J. R. (1976). Species of the subgenus Schizotrypanum other than Trypanosoma cruzi and their potential usefulness in the laboratory. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 126–7.CrossRefGoogle ScholarPubMed
Baker, J. R. (1980). Primary isolate numbers of stocks of Trypanosoma (Schizotrypanum) species from Chiroptera in England. Systematic Parasitology 1, 153–4.CrossRefGoogle Scholar
Baker, J. R., Green, S. M., Chaloner, L. A. & Gaborak, M. (1972). Trypanosoma (Schizotrypanum) dionisii of Pipistrellus pipestrellus (Chiroptera): intra- and extracellular development in vitro. Parasitology 65, 251–63.Google Scholar
Baker, J. R., Liston, A. J. & Selden, L. F. (1976). Trypomastigote dimorphism and satellite deoxyribonucleic acid in a clone of Trypanosoma (Schizotrypanum) dionisii. Journal of General Microbiology 97, 113–15.Google Scholar
Baker, J. R. & Selden, L. F. (1978). Trypanosoma (Schizotrypanum) dionisii: influence of mouse peritoneal macrophages and calf sera on extracellular growth in vitro at 37 °C. Journal of General Microbiology 106, 2732.CrossRefGoogle Scholar
Bretz, U. & Baggiolini, M. (1974). Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes. Journal of Cell Biology 63, 251–69.CrossRefGoogle ScholarPubMed
Docampo, R., Lopes, J. N., Cruz, F. S. & De Souza, W. (1977). Trypanosoma cruzi: ultra-structural and metabolic alterations of epimastigotes by β-lapachone. Experimental Parasitology 42, 142–9.Google Scholar
Kierszenbaum, F. (1979). Antibody-dependent killing of bloodstream forms of Trypanosoma cruzi by human peripheral blood leukocytes. American Journal of Tropical Medicine and Hygiene 28, 965–8.Google Scholar
Mkwananzi, J. B., Franks, D. & Baker, J. R. (1976). Cytotoxicity of antibody-coated trypanosomes by normal human lymphoid cells. Nature, London 259, 403–4.Google Scholar
Nogueira, N. & Cohn, Z. A. (1978). Trypanosoma cruzi: in vitro induction of macrophage microbicidal activity. Journal of Experimental Medicine 148, 288300.CrossRefGoogle ScholarPubMed
Olabuenaga, S. E., Cardoni, R. L., Segura, E. L., Riera, N. E. & de Bracco, M. M. E. (1979). Antibody-dependent cytolysis of Trypanosoma cruzi by human polymorphonuclear leukocytes. Cellular Immunology 45, 8593.CrossRefGoogle ScholarPubMed
Sanderson, C. J., Moreno, Bunn M. M. & Lopez, A. F. (1978). Antibody dependent cell-mediated cytotoxicity of Trypanosoma cruzi: the release of tritium labelled RNA, DNA and protein. Parasitology 76, 299307.Google Scholar
Selden, L. F. & Baker, J. R. (1980). Aseptic separation of cultivated trypomastigotes from epimastigotes of Trypanosoma (Schizotrypanum) dionisii using DEAE cellulose. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 406–7.CrossRefGoogle ScholarPubMed
Thorne, K. J. I., Glauert, A. M., Svvennsen, R. J. & Franks, D. (1979). Phagocytosis and killing of Trypanosoma dionisii by human neutrophils, eosinophils and monocytes. Parasitology 79, 367–79.CrossRefGoogle ScholarPubMed
Thorne, K. J. I., Svvennsen, R. J. & Franks, D. (1978). Role of hydrogen peroxide and peroxidase in the cytotoxicity of Trypanosoma dionisii by human granulocytes. Infection and Immunity 21, 798805.Google Scholar
Williams, D. M. & Remington, J. S. (1977). Effect of human monocytes and macrophages on Trypanosoma cruzi. Immunology 32, 1923.Google ScholarPubMed
Wilson, C. B., Tsai, V. & Remington, J. S. (1980). Failure to trigger the oxidative metabolic burst by normal macrophages. Possible mechanism for survival of intracellular pathogens. Journal of Experimental Medicine 151, 328–46.Google Scholar