Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T18:49:03.114Z Has data issue: false hasContentIssue false

Evasion of innate immunity by vaccinia virus

Published online by Cambridge University Press:  11 November 2005

I. R. HAGA
Affiliation:
Department of Biochemistry, Trinity College, Dublin 2, Ireland
A. G. BOWIE
Affiliation:
Department of Biochemistry, Trinity College, Dublin 2, Ireland

Abstract

Vaccinia virus, a member of the Poxviridae, expresses many proteins involved in immune evasion. In this review, we present a brief characterisation of the virus and its effects on host cells and discuss representative secreted and intracellular proteins expressed by vaccinia virus that are involved in modulation of innate immunity. These proteins target different aspects of the innate response by binding cytokines and interferons, inhibiting cytokine synthesis, opposing apoptosis or interfering with different signalling pathways, including those triggered by interferons and toll-like receptors.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AIZAWA, Y., AKITA, K., TANIAI, M., TORIGOE, K., MORI, T., NISHIDA, Y., USHIO, S., NUKADA, Y., TANIMOTO, T., IKEGAMI, H., IKEDA, M. & KURIMOTO, M. ( 1999). Cloning and expression of interleukin-18 binding protein. FEBS Letters 445, 338342.CrossRefGoogle Scholar
ALCAMI, A. ( 2003). Viral mimicry of cytokines, chemokines and their receptors. Nature Reviews Immunology 3, 3650.CrossRefGoogle Scholar
ALCAMI, A. & KOSZINOWSKI, U. H. ( 2000). Viral mechanisms of immune evasion. Trends in Microbiology 8, 410418.CrossRefGoogle Scholar
ALCAMI, A. & SMITH, G. L. ( 1992). A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153167.CrossRefGoogle Scholar
ALCAMI, A. & SMITH, G. L. ( 1996). A mechanism for the inhibition of fever by a virus. Proceedings of the National Academy of Sciences, USA 93, 1102911034.CrossRefGoogle Scholar
ALCAMI, A., SYMONS, J. A. & SMITH, G. L. ( 2000). The vaccinia virus soluble alpha/beta interferon (IFN) receptor binds to the cell surface and protects cells from the antiviral effects of IFN. Journal of Virology 74, 1123011239.CrossRefGoogle Scholar
ALI, A. N., TURNER, P. C., BROOKS, M. A. & MOYER, R. W. ( 1994). The SPI-1 gene of rabbitpox virus determines host range and is required for hemorrhagic pock formation. Virology 202, 305314.CrossRefGoogle Scholar
APPLEYARD, G., HAPEL, A. J. & BOULTER, E. A. ( 1971). An antigenic difference between intracellular and extracellular rabbitpox virus. Journal of General Virology 13, 917.CrossRefGoogle Scholar
BABLANIAN, R. ( 1970). Studies on the mechanism of vaccinia virus cytopathic effects: effect of inhibitors of RNA and protein synthesis on early virus-induced cell damage. Journal of General Virology 6, 221230.CrossRefGoogle Scholar
BABLANIAN, R., ESTEBAN, M., BAXT, B. & SONNABEND, J. A. ( 1978). Studies on the mechanisms of vaccinia virus cytopathic effects. I. Inhibition of protein synthesis in infected cells is associated with virus-induced RNA synthesis. Journal of General Virology 39, 391402.Google Scholar
BABLANIAN, R., GOSWAMI, S. K., ESTEBAN, M., BANERJEE, A. K. & MERRICK, W. C. ( 1991). Mechanism of selective translation of vaccinia virus mRNAs: differential role of poly(A) and initiation factors in the translation of viral and cellular mRNAs. Journal of Virology 65, 44494460.Google Scholar
BARRY, M. & McFADDEN, G. ( 2000). Regulation of Apoptosis by Poxviruses. In Effects of Microbes on the Immune System ( Eds. Cunningham, M. W. & Fujinami, R. S.), Chapter 31, Lippincott Williams & Wilkins, Philadelphia, pp. 509520.
BARTLETT, N., SYMONS, J. A., TSCHARKE, D. C. & SMITH, G. L. ( 2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. Journal of General Virology 83, 19651976.CrossRefGoogle Scholar
BEATTIE, E., DENZLER, K. L., TARTAGLIA, J., PERKUS, M. E., PAOLETTI, E. & JACOBS, B. L. ( 1995 a). Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene. Journal of Virology 69, 499505.Google Scholar
BEATTIE, E., PAOLETTI, E. & TARTAGLIA, J. ( 1995 b). Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L- and E3L-mutant viruses. Virology 210, 254263.Google Scholar
BEAUD, G., SHARIF, A., TOPA-MASSE, A. & LEADER, D. P. ( 1994). Ribosomal protein S2/Sa kinase purified from HeLa cells infected with vaccinia virus corresponds to the B1R protein kinase and phosphorylates in vitro the viral ssDNA-binding protein. Journal of General Virology 75, 283293.CrossRefGoogle Scholar
BIRON, C. A. ( 1998). Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections. Seminars in Immunology 10, 383390.CrossRefGoogle Scholar
BOEHM, U., KLAMP, T., GROOT, M. & HOWARD, J. C. ( 1997). Cellular responses to interferon-gamma. Annual Review of Immunology 15, 749795.CrossRefGoogle Scholar
BORN, T. L., MORRISON, L. A., ESTEBAN, D. J., VANDENBOS, T., THEBEAU, L. G., CHEN, N., SPRIGGS, M. K., SIMS, J. E. & BULLER, R. M. ( 2000). A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. Journal of Immunology 164, 32463254.CrossRefGoogle Scholar
BOULTER, E. A. ( 1969). Protection against poxviruses. Proceedings of the Royal Society of Medicine 62, 295297.Google Scholar
BOULTER, E. A. & APPLEYARD, G. ( 1973). Differences between extracellular and intracellular forms of poxvirus and their implications. Progress in Medical Virology 16, 86108.Google Scholar
BOULTER, E. A., ZWARTOUW, H. T., TITMUSS, D. H. & MABER, H. B. ( 1971). The nature of the immune state produced by inactivated vaccinia virus in rabbits. American Journal of Epidemiology 94, 612620.CrossRefGoogle Scholar
BOWIE, A. G. & HAGA, I. R. ( 2005). The role of Toll-like receptors in the host response to viruses. Molecular Immunology 42, 859867.CrossRefGoogle Scholar
BOWIE, A., KISS-TOTH, E., SYMONS, J. A., SMITH, G. L., DOWER, S. K. & O'NEILL, L. A. ( 2000). A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll- like receptor signaling. Proceedings of the National Academy of Sciences, USA 97, 1016210167.CrossRefGoogle Scholar
BRANDT, T., HECK, M. C., VIJAYSRI, S., JENTARRA, G. M., CAMERON, J. M. & JACOBS, B. L. ( 2005). The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology 333, 263270.CrossRefGoogle Scholar
BRODER, C. C., KENNEDY, P. E., MICHAELS, F. & BERGER, E. A. ( 1994). Expression of foreign genes in cultured human primary macrophages using recombinant vaccinia virus vectors. Gene 142, 167174.CrossRefGoogle Scholar
BRONTE, V., CARROLL, M. W., GOLETZ, T. J., WANG, M., OVERWIJK, W. W., MARINCOLA, F., ROSENBERG, S. A., MOSS, B. & RESTIFO, N. P. ( 1997). Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proceedings of the National Academy of Sciences, USA 94, 31833188.CrossRefGoogle Scholar
BROOKS, M. A., ALI, A. N., TURNER, P. C. & MOYER, R. W. ( 1995). A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells. Journal of Virology 69, 76887698.Google Scholar
BRUTKIEWICZ, R. R., KLAUS, S. J. & WELSH, R. M. ( 1992). Window of vulnerability of vaccinia virus-infected cells to natural killer (NK) cell-mediated cytolysis correlates with enhanced NK cell triggering and is concomitant with a decrease in H-2 class I antigen expression. Nature Immunology 11, 203214.Google Scholar
BUKOWSKI, J. F., WODA, B. A., HABU, S., OKUMURA, K. & WELSH, R. M. ( 1983). Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. Journal of Immunology 131, 15311538.Google Scholar
BULLER, R. M. & PALUMBO, G. J. ( 1991). Poxvirus pathogenesis. Microbiological Reviews 55, 80122.Google Scholar
BURZYN, D., RASSA, J. C., KIM, D., NEPOMNASCHY, I., ROSS, S. R. & PIAZZON, I. ( 2004). Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. Journal of Virology 78, 576584.CrossRefGoogle Scholar
CAO, Z., XIONG, J., TAKEUCHI, M., KURAMA, T. & GOEDDEL, D. V. ( 1996). TRAF6 is a signal transducer for interleukin-1. Nature 383, 443446.CrossRefGoogle Scholar
CARRASCO, L. & ESTEBAN, M. ( 1982). Modification of membrane permeability in vaccinia virus-infected cells. Virology 117, 6269.CrossRefGoogle Scholar
COMEAU, M. R., JOHNSON, R., DUBOSE, R. F., PETERSEN, M., GEARING, P., VANDENBOS, T., PARK, L., FARRAH, T., BULLER, R. M., COHEN, J. I., STROCKBINE, L. D., RAUCH, C. & SPRIGGS, M. K. ( 1998). A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 8, 473482.CrossRefGoogle Scholar
CUDMORE, S., COSSART, P., GRIFFITHS, G. & WAY, M. ( 1995). Actin-based motility of vaccinia virus. Nature 378, 636638.CrossRefGoogle Scholar
DALES, S. ( 1990). Reciprocity in the interactions between the poxviruses and their host cells. Annual Review of Microbiology 44, 173192.CrossRefGoogle Scholar
DAR, A. C. & SICHERI, F. ( 2002). X-ray crystal structure and functional analysis of vaccinia virus K3L reveals molecular determinants for PKR subversion and substrate recognition. Molecular Cell 10, 295305.CrossRefGoogle Scholar
DAVIES, M. V., ELROY-STEIN, O., JAGUS, R., MOSS, B. & KAUFMAN, R. J. ( 1992). The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Journal of Virology 66, 19431950.Google Scholar
DAVIES, M. V., CHANG, H. W., JACOBS, B. L. & KAUFMAN, R. J. ( 1993). The E3L and K3L vaccinia virus gene products stimulate translation through inhibition of the double-stranded RNA-dependent protein kinase by different mechanisms. Journal of Virology 67, 16881692.Google Scholar
DENG, L., WANG, C., SPENCER, E., YANG, L., BRAUN, A., YOU, J., SLAUGHTER, C., PICKART, C. & CHEN, Z. J. ( 2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351361.CrossRefGoogle Scholar
DEONARAIN, R., ALCAMI, A., ALEXIOU, M., DALLMAN, M. J., GEWERT, D. R. & PORTER, A. C. ( 2000). Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. Journal of Virology 74, 34043409.CrossRefGoogle Scholar
DES GOUTTES OLGIATI, D., POGO, B. G. & DALES, S. ( 1976). Biogenesis of vaccinia: specific inhibition of rapidly labeled host DNA in vaccinia inoculated cells. Virology 71, 325335.CrossRefGoogle Scholar
DIEBOLD, S. S., KAISHO, T., HEMMI, H., AKIRA, S. & REIS E SOUSA, C. ( 2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 15291531.CrossRefGoogle Scholar
DINARELLO, C. A. ( 1999). Interleukin-18. Methods 19, 121132.CrossRefGoogle Scholar
DIPERNA, G., STACK, J., BOWIE, A. G., BOYD, A., KOTWAL, G., ZHANG, Z., ARVIKAR, S., LATZ, E., FITZGERALD, K. A. & MARSHALL, W. L. ( 2004). Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. Journal of Biological Chemistry 279, 3657036578.CrossRefGoogle Scholar
DOBBELSTEIN, M. & SHENK, T. ( 1996). Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. Journal of Virology 70, 64796485.Google Scholar
DUBOCHET, J., ADRIAN, M., RICHTER, K., GARCES, J. & WITTEK, R. ( 1994). Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. Journal of Virology 68, 19351941.Google Scholar
EVERETT, H. & McFADDEN, G. ( 1999). Apoptosis: an innate immune response to virus infection. Trends in Microbiology 7, 160165.CrossRefGoogle Scholar
FARRAR, M. A. & SCHREIBER, R. D. ( 1993). The molecular cell biology of interferon-gamma and its receptor. Annual Review of Immunology 11, 571611.CrossRefGoogle Scholar
FENNER, F. ( 1988). Smallpox and its Eradication. World Health Organization, Geneva.
FENNER, F., WITTEK, R. & DUMBELL, K. R. ( 1989). The Orthopoxviruses. Academic Press, London.
GARDNER, J. D., TSCHARKE, D. C., READING, P. C. & SMITH, G. L. ( 2001). Vaccinia virus semaphorin A39R is a 50–55. kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. Journal of General Virology 82, 20832093.Google Scholar
HARTE, M. T., HAGA, I. R., MALONEY, G., GRAY, P., READING, P. C., BARTLETT, N. W., SMITH, G. L., BOWIE, A. & O'NEILL, L. A. ( 2003). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. Journal of Experimental Medicine 197, 343351.CrossRefGoogle Scholar
HEIL, F., HEMMI, H., HOCHREIN, H., AMPENBERGER, F., KIRSCHNING, C., AKIRA, S., LIPFORD, G., WAGNER, H. & BAUER, S. ( 2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 15261529.CrossRefGoogle Scholar
HILLER, G., WEBER, K., SCHNEIDER, L., PARAJSZ, C. & JUNGWIRTH, C. ( 1979). Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology 98, 142153.CrossRefGoogle Scholar
HISCOTT, J., KWON, H. & GENIN, P. ( 2001). Hostile takeovers: viral appropriation of the NF-kappaB pathway. Journal of Clinical Investigation 107, 143151.CrossRefGoogle Scholar
HOCHSTEIN-MINTZEL, V., HUBER, H. C. & STICKL, H. ( 1972). [Virulence and immunogenicity of a modified vaccinia virus (strain MVA) (author's transl).] Zeitschrift für Immunitatsforschung, Experimentelle und Klinische Immunologie 144, 104156.Google Scholar
HOEBE, K., DU, X., GEORGEL, P., JANSSEN, E., TABETA, K., KIM, S. O., GOODE, J., LIN, P., MANN, N., MUDD, S., CROZAT, K., SOVATH, S., HAN, J. & BEUTLER, B. ( 2003). Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743748.CrossRefGoogle Scholar
HUANG, S., HENDRIKS, W., ALTHAGE, A., HEMMI, S., BLUETHMANN, H., KAMIJO, R., VILCEK, J., ZINKERNAGEL, R. M. & AGUET, M. ( 1993). Immune response in mice that lack the interferon-gamma receptor. Science 259, 17421745.CrossRefGoogle Scholar
ICHIHASHI, Y., MATSUMOTO, S. & DALES, S. ( 1971). Biogenesis of poxviruses: role of A-type inclusions and host cell membranes in virus dissemination. Virology 46, 507532.CrossRefGoogle Scholar
IWASAKI, A. & MEDZHITOV, R. ( 2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology 5, 987995.CrossRefGoogle Scholar
JACOBSON, M. D., WEIL, M. & RAFF, M. C. ( 1997). Programmed cell death in animal development. Cell 88, 347354.CrossRefGoogle Scholar
JANEWAY, C. ( 2004). Immunobiology 6: The Immune System in Health and Disease. 6th. Garland Pub., New York.
JANSSENS, S. & BEYAERT, R. ( 2003). Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Molecular Cell 11, 293302.CrossRefGoogle Scholar
JOHNSON, H. M., BAZER, F. W., SZENTE, B. E. & JARPE, M. A. ( 1994). How interferons fight disease. Scientific American 270, 6875.CrossRefGoogle Scholar
KARUPIAH, G., BULLER, R. M., VAN ROOIJEN, N., DUARTE, C. J. & CHEN, J. ( 1996). Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. Journal of Virology 70, 83018309.Google Scholar
KERR, J. F., WYLLIE, A. H. & CURRIE, A. R. ( 1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer 26, 239257.CrossRefGoogle Scholar
KETTLE, S., ALCAMI, A., KHANNA, A., EHRET, R., JASSOY, C. & SMITH, G. L. ( 1997). Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. Journal of General Virology 78, 677685.CrossRefGoogle Scholar
KETTLE, S., BLAKE, N. W., LAW, K. M. & SMITH, G. L. ( 1995). Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M(r) 38.5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206, 136147.Google Scholar
KIBLER, K. V., SHORS, T., PERKINS, K. B., ZEMAN, C. C., BANASZAK, M. P., BIESTERFELDT, J., LANGLAND, J. O. & JACOBS, B. L. ( 1997). Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. Journal of Virology 71, 19922003.Google Scholar
KURT-JONES, E. A., POPOVA, L., KWINN, L., HAYNES, L. M., JONES, L. P., TRIPP, R. A., WALSH, E. E., FREEMAN, M. W., GOLENBOCK, D. T., ANDERSON, L. J. & FINBERG, R. W. ( 2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunology 1, 398401.CrossRefGoogle Scholar
LANGLAND, J. O. & JACOBS, B. L. ( 2002). The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299, 133141.CrossRefGoogle Scholar
LANGLAND, J. O. & JACOBS, B. L. ( 2004). Inhibition of PKR by vaccinia virus: role of the N- and C-terminal domains of E3L. Virology 324, 419429.CrossRefGoogle Scholar
LAW, M., PUTZ, M. M. & SMITH, G. L. ( 2005). An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. Journal of General Virology 86, 9911000.CrossRefGoogle Scholar
LEGRAND, F. A., VERARDI, P. H., JONES, L. A., CHAN, K. S., PENG, Y. & YILMA, T. D. ( 2004). Induction of potent humoral and cell-mediated immune responses by attenuated vaccinia virus vectors with deleted serpin genes. Journal of Virology 78, 27702779.CrossRefGoogle Scholar
LEGRAND, F. A., VERARDI, P. H., CHAN, K. S., PENG, Y., JONES, L. A. & YILMA, T. D. ( 2005). Vaccinia viruses with a serpin gene deletion and expressing IFN-gamma induce potent immune responses without detectable replication in vivo. Proceedings of the National Academy of Sciences, USA 102, 29402945.CrossRefGoogle Scholar
LU, C. & BABLANIAN, R. ( 1996). Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus-infected cells. Proceedings of the National Academy of Sciences, USA 93, 20372042.CrossRefGoogle Scholar
LUDWIG, H., MAGES, J., STAIB, C., LEHMANN, M. H., LANG, R. & SUTTER, G. ( 2005). Role of viral factor E3L in modified vaccinia virus Ankara infection of human HeLa Cells: regulation of the virus life cycle and identification of differentially expressed host genes. Journal of Virology 79, 25842596.CrossRefGoogle Scholar
LUND, J., SATO, A., AKIRA, S., MEDZHITOV, R. & IWASAKI, A. ( 2003). Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. Journal of Experimental Medicine 198, 513520.CrossRefGoogle Scholar
LUND, J. M., ALEXOPOULOU, L., SATO, A., KAROW, M., ADAMS, N. C., GALE, N. W., IWASAKI, A. & FLAVELL, R. A. ( 2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proceedings of the National Academy of Sciences, USA 101, 55985603.CrossRefGoogle Scholar
MACEN, J. L., GARNER, R. S., MUSY, P. Y., BROOKS, M. A., TURNER, P. C., MOYER, R. W., MCFADDEN, G. & BLEACKLEY, R. C. ( 1996). Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Proceedings of the National Academy of Sciences, USA 93, 91089113.CrossRefGoogle Scholar
MAHNEL, H. & MAYR, A. ( 1994). [Experiences with immunization against orthopoxviruses of humans and animals using vaccine strain MVA.] Berliner und Munchener Tierarztliche Wochenschrift 107, 253256.Google Scholar
MARTIN, M., BOL, G. F., ERIKSSON, A., RESCH, K. & BRIGELIUS-FLOHE, R. ( 1994). Interleukin-1-induced activation of a protein kinase co-precipitating with the type I interleukin-1 receptor in T cells. European Journal of Immunology 24, 15661571.CrossRefGoogle Scholar
MAUDSLEY, D. J. & POUND, J. D. ( 1991). Modulation of MHC antigen expression by viruses and oncogenes. Immunology Today 12, 429431.CrossRefGoogle Scholar
MAYR, A., STICKL, H., MULLER, H. K., DANNER, K. & SINGER, H. ( 1978). [The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author's transl).] Zentralblatt für Bakteriologie [ B] 167, 375390.Google Scholar
MBUY, G. N., MORRIS, R. E. & BUBEL, H. C. ( 1982). Inhibition of cellular protein synthesis by vaccinia virus surface tubules. Virology 116, 137147.CrossRefGoogle Scholar
McCOY, S. L., KURTZ, S. E., MACARTHUR, C. J., TRUNE, D. R. & HEFENEIDER, S. H. ( 2005). Identification of a peptide derived from vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial-induced inflammation. Journal of Immunology 174, 30063014.CrossRefGoogle Scholar
MILLER, G. & ENDERS, J. F. ( 1968). Vaccinia virus replication and cytopathic effect in cultures in phytohemagglutinin-treated human peripheral blood leukocytes. Journal of Virology 2, 787792.Google Scholar
MOSS, B. ( 2001). Poxviridae: the viruses and their replication. In Fields Virology ( Eds. Knipe, D. M. & Howley, P. M.), Vol. 2, Lippincott Williams & Wilkins, Philadelphia, pp. 28492883.
MULLER, U., STEINHOFF, U., REIS, L. F., HEMMI, S., PAVLOVIC, J., ZINKERNAGEL, R. M. & AGUET, M. ( 1994). Functional role of type I and type II interferons in antiviral defense. Science 264, 19181921.CrossRefGoogle Scholar
NAJARRO, P., TRAKTMAN, P. & LEWIS, J. A. ( 2001). Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. Journal of Virology 75, 31853196.CrossRefGoogle Scholar
NISHMI, M. & BERNKOPF, H. ( 1958). The toxic effect of vaccinia virus on leucocytes in vitro. Journal of Immunology 81, 460466.Google Scholar
NOVICK, D., KIM, S. H., FANTUZZI, G., REZNIKOV, L. L., DINARELLO, C. A. & RUBINSTEIN, M. ( 1999). Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10, 127136.CrossRefGoogle Scholar
O'NEILL, L. A., FITZGERALD, K. A. & BOWIE, A. G. ( 2003). The Toll-IL-1 receptor adaptor family grows to five members. Trends in Immunology 24, 286290.CrossRefGoogle Scholar
OSBORNE, B. A. ( 1996). Apoptosis and the maintenance of homoeostasis in the immune system. Current Opinion in Immunology 8, 245254.CrossRefGoogle Scholar
PASARE, C. & MEDZHITOV, R. ( 2004). Toll-like receptors: linking innate and adaptive immunity. Microbes and Infection 6, 13821387.CrossRefGoogle Scholar
PAYNE, L. G. ( 1980). Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. Journal of General Virology 50, 89100.CrossRefGoogle Scholar
PEDLEY, S. & COOPER, R. J. ( 1984). The inhibition of HeLa cell RNA synthesis following infection with vaccinia virus. Journal of General Virology 65, 16871697.CrossRefGoogle Scholar
PERKUS, M. E., GOEBEL, S. J., DAVIS, S. W., JOHNSON, G. P., LIMBACH, K., NORTON, E. K. & PAOLETTI, E. ( 1990). Vaccinia virus host range genes. Virology 179, 276286.CrossRefGoogle Scholar
PERSON-FERNANDEZ, A. & BEAUD, G. ( 1986). Purification and characterization of a protein synthesis inhibitor associated with vaccinia virus. Journal of Biological Chemistry 261, 82838289.Google Scholar
PLOUBIDOU, A., MOREAU, V., ASHMAN, K., RECKMANN, I., GONZALEZ, C. & WAY, M. ( 2000). Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO Journal 19, 39323944.CrossRefGoogle Scholar
RAMSEY-EWING, A. & MOSS, B. ( 1995). Restriction of vaccinia virus replication in CHO cells occurs at the stage of viral intermediate protein synthesis. Virology 206, 984993.CrossRefGoogle Scholar
RAMSEY-EWING, A. L. & MOSS, B. ( 1996). Complementation of a vaccinia virus host-range K1L gene deletion by the nonhomologous CP77 gene. Virology 222, 7586.CrossRefGoogle Scholar
RAMSEY-EWING, A. & MOSS, B. ( 1998). Apoptosis induced by a postbinding step of vaccinia virus entry into Chinese hamster ovary cells. Virology 242, 138149.CrossRefGoogle Scholar
RAMSHAW, I. A., RAMSAY, A. J., KARUPIAH, G., ROLPH, M. S., MAHALINGAM, S. & RUBY, J. C. ( 1997). Cytokines and immunity to viral infections. Immunological Reviews 159, 119135.CrossRefGoogle Scholar
RASSA, J. C. & ROSS, S. R. ( 2003). Viruses and Toll-like receptors. Microbes and Infection 5, 961968.CrossRefGoogle Scholar
RICE, A. P. & ROBERTS, B. E. ( 1983). Vaccinia virus induces cellular mRNA degradation. Journal of Virology 47, 529539.Google Scholar
RODRIGUEZ, J. R., RODRIGUEZ, D. & ESTEBAN, M. ( 1991). Interferon treatment inhibits early events in vaccinia virus gene expression in infected mice. Virology 185, 929933.CrossRefGoogle Scholar
ROOS, N., CYRKLAFF, M., CUDMORE, S., BLASCO, R., KRIJNSE-LOCKER, J. & GRIFFITHS, G. ( 1996). A novel immunogold cryoelectron microscopic approach to investigate the structure of the intracellular and extracellular forms of vaccinia virus. EMBO Journal 15, 23432355.Google Scholar
SAMUEL, C. E. ( 1991). Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183, 111.Google Scholar
SANDERSON, C. M., WAY, M. & SMITH, G. L. ( 1998). Virus-induced cell motility. Journal of Virology 72, 12351243.Google Scholar
SCHELLEKENS, H., DE REUS, A., BOLHUIS, R., FOUNTOULAKIS, M., SCHEIN, C., ECSODI, J., NAGATA, S. & WEISSMANN, C. ( 1981). Comparative antiviral efficiency of leukocyte and bacterially produced human alpha-interferon in rhesus monkeys. Nature 292, 775776.CrossRefGoogle Scholar
SEE, D. M., KHEMKA, P., SAHL, L., BUI, T. & TILLES, J. G. ( 1997). The role of natural killer cells in viral infections. Scandinavian Journal of Immunology 46, 217224.CrossRefGoogle Scholar
SHISLER, J. L. & JIN, X. L. ( 2004). The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing IkappaBalpha degradation. Journal of Virology 78, 35533560.CrossRefGoogle Scholar
SMITH, G. L. ( 2000). Secreted poxvirus proteins that interact with the immune system. In Effects of Microbes on the Immune System (Eds. Cunningham, M. W. & Fujinami, R. S.), Lippincott Williams & Wilkins, Philadelphia, pp. 491–507.
SMITH, C. A., DAVIS, T., WIGNALL, J. M., DIN, W. S., FARRAH, T., UPTON, C., MCFADDEN, G. & GOODWIN, R. G. ( 1991). T2 open reading frame from the Shope fibroma virus encodes a soluble form of the TNF receptor. Biochemical and Biophysical Research Communications 176, 335342.CrossRefGoogle Scholar
SMITH, G. L., SYMONS, J. A., KHANNA, A., VANDERPLASSCHEN, A. & ALCAMI, A. ( 1997). Vaccinia virus immune evasion. Immunological Reviews 159, 137154.CrossRefGoogle Scholar
SMITH, G. L. & VANDERPLASSCHEN, A. ( 1998). Extracellular enveloped vaccinia virus. Entry, egress, and evasion. Advances in Experimental Medicine and Biology 440, 395414.CrossRefGoogle Scholar
SMITH, G. L., VANDERPLASSCHEN, A. & LAW, M. ( 2002). The formation and function of extracellular enveloped vaccinia virus. Journal of General Virology 83, 29152931.CrossRefGoogle Scholar
SMITH, V. P., BRYANT, N. A. & ALCAMI, A. ( 2000). Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. Journal of General Virology 81, 12231230.CrossRefGoogle Scholar
SPEHNER, D., GILLARD, S., DRILLIEN, R. & KIRN, A. ( 1988). A cowpox virus gene required for multiplication in Chinese hamster ovary cells. Journal of Virology 62, 12971304.Google Scholar
STACK, J., HAGA, I. R., SCHRODER, M., BARTLETT, N. W., MALONEY, G., READING, P. C., FITZGERALD, K. A., SMITH, G. L. & BOWIE, A. G. ( 2005). Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. Journal of Experimental Medicine 201, 10071018.CrossRefGoogle Scholar
STICKL, H., HOCHSTEIN-MINTZEL, V., MAYR, A., HUBER, H. C., SCHAFER, H. & HOLZNER, A. ( 1974). [MVA vaccination against smallpox: clinical tests with an attenuated live vaccinia virus strain (MVA) (author's transl).] Deutsche Medizinische Wochenschrift 99, 23862392.CrossRefGoogle Scholar
STOKES, G. V. ( 1976). High-voltage electron microscope study of the release of vaccinia virus from whole cells. Journal of Virology 18, 636643.Google Scholar
SYMONS, J. A., ALCAMI, A. & SMITH, G. L. ( 1995). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551560.CrossRefGoogle Scholar
TAKAOKA, A., YANAI, H., KONDO, S., DUNCAN, G., NEGISHI, H., MIZUTANI, T., KANO, S., HONDA, K., OHBA, Y., MAK, T. W. & TANIGUCHI, T. ( 2005). Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243249.CrossRefGoogle Scholar
TAKEDA, K., KAISHO, T. & AKIRA, S. ( 2003). Toll-like receptors. Annual Review of Immunology 21, 335376.CrossRefGoogle Scholar
TANIGUCHI, T., OGASAWARA, K., TAKAOKA, A. & TANAKA, N. ( 2001). IRF family of transcription factors as regulators of host defense. Annual Review of Immunology 19, 623655.CrossRefGoogle Scholar
THORNBERRY, N. A., BULL, H. G., CALAYCAY, J. R., CHAPMAN, K. T., HOWARD, A. D., KOSTURA, M. J., MILLER, D. K., MOLINEAUX, S. M., WEIDNER, J. R., AUNINS, J. et al. ( 1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768774.CrossRefGoogle Scholar
TRIANTAFILOU, K. & TRIANTAFILOU, M. ( 2004). Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. Journal of Virology 78, 1131311320.CrossRefGoogle Scholar
TSCHARKE, D. C., KARUPIAH, G., ZHOU, J., PALMORE, T., IRVINE, K. R., HAERYFAR, S. M., WILLIAMS, S., SIDNEY, J., SETTE, A., BENNINK, J. R. & YEWDELL, J. W. ( 2005). Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. Journal of Experimental Medicine 201, 95104.CrossRefGoogle Scholar
TSCHARKE, D. C., READING, P. C. & SMITH, G. L. ( 2002). Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. Journal of General Virology 83, 19771986.CrossRefGoogle Scholar
UEMATSU, S., SATO, S., YAMAMOTO, M., HIROTANI, T., KATO, H., TAKESHITA, F., MATSUDA, M., COBAN, C., ISHII, K. J., KAWAI, T., TAKEUCHI, O. & AKIRA, S. ( 2005). Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-{alpha} induction. Journal of Experimental Medicine 201, 915923.CrossRefGoogle Scholar
UPTON, C., MOSSMAN, K. & McFADDEN, G. ( 1992). Encoding of a homolog of the IFN-gamma receptor by myxoma virus. Science 258, 13691372.CrossRefGoogle Scholar
VAIDYA, S. A. & CHENG, G. ( 2003). Toll-like receptors and innate antiviral responses. Current Opinion in Immunology 15, 402407.CrossRefGoogle Scholar
VAN DEN BROEK, M. F., MULLER, U., HUANG, S., AGUET, M. & ZINKERNAGEL, R. M. ( 1995). Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. Journal of Virology 69, 47924796.Google Scholar
VANDERPLASSCHEN, A., HOLLINSHEAD, M. & SMITH, G. L. ( 1998). Intracellular and extracellular vaccinia virions enter cells by different mechanisms. Journal of General Virology 79, 877887.CrossRefGoogle Scholar
VIATOUR, P., MERVILLE, M. P., BOURS, V. & CHARIOT, A. ( 2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends in Biochemical Sciences 30, 4352.CrossRefGoogle Scholar
WALZER, T., GALIBERT, L. & DE SMEDT, T. ( 2005). Poxvirus semaphorin A39R inhibits phagocytosis by dendritic cells and neutrophils. European Journal of Immunology 35, 391398.CrossRefGoogle Scholar
WANG, C., DENG, L., HONG, M., AKKARAJU, G. R., INOUE, J. & CHEN, Z. J. ( 2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346351.CrossRefGoogle Scholar
WERENNE, J., VANDEN BROECKE, C., SCHWERS, A., GOOSSENS, A., BUGYAKI, L., MAENHOUDT, M. & PASTORET, P. P. ( 1985). Antiviral effect of bacterially produced human interferon (Hu-IFN alpha 2) against experimental vaccinia infection in calves. Journal of Interferon Research 5, 129136.CrossRefGoogle Scholar
WIETEK, C., MIGGIN, S. M., JEFFERIES, C. A. & O'NEILL, L. A. ( 2003). Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-kappa. Journal of Biological Chemistry 278, 5092350931.CrossRefGoogle Scholar
XIANG, Y. & MOSS, B. ( 1999). IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proceedings of the National Academy of Sciences, USA 96, 1153711542.CrossRefGoogle Scholar
ZHOU, Q., SNIPAS, S., ORTH, K., MUZIO, M., DIXIT, V. M. & SALVESEN, G. S. ( 1997). Target protease specificity of the viral serpin CrmA. Analysis of five caspases. Journal of Biological Chemistry 272, 77977800.CrossRefGoogle Scholar
ZIMMERMANN, K. C., BONZON, C. & GREEN, D. R. ( 2001). The machinery of programmed cell death. Pharmacology and Therapeutics 92, 5770.CrossRefGoogle Scholar