Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T19:30:10.253Z Has data issue: false hasContentIssue false

Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae

Published online by Cambridge University Press:  19 October 2012

I. C. STEINMANN
Affiliation:
Vector Entomology Unit, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
V. PFLÜGER
Affiliation:
Mabritec SA, Riehen, Switzerland
F. SCHAFFNER
Affiliation:
Vector Entomology Unit, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
A. MATHIS
Affiliation:
Vector Entomology Unit, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
C. KAUFMANN*
Affiliation:
Vector Entomology Unit, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
*
*Corresponding author: Vector Entomology Unit, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland. Tel: +41 44 635 85 01. Fax: +41 44 635 89 07. E-mail: [email protected]

Summary

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0·2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1·5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ansari, M. A., Pope, E. C., Carpenter, S., Scholte, E. J. and Butt, T. M. (2011). Entomopathogenic fungus as a biological control for an important vector of livestock disease: the Culicoides biting midge. PLoS One 6, e16108.CrossRefGoogle ScholarPubMed
Bauer, B., Jandowsky, A., Schein, E., Mehlitz, D. and Clausen, P.-H. (2009). An appraisal of current and new techniques intended to protect bulls against Culicoides and other haematophagous Nematocera: the case of Schmergow, Brandenburg, Germany. Parasitology Research 105, 359365.CrossRefGoogle ScholarPubMed
Blackwell, A. and King, F. C. (1997). The vertical distribution of Culicoides impunctatus larvae. Medical and Veterinary Entomology 11, 4548.CrossRefGoogle ScholarPubMed
Boorman, J. (1974). The maintenance of laboratory colonies of Culicoides variipennis (Coq.), C. nubeculosus (Mg.) and C. riethi Kiff. (Diptera, Ceratopogonidae). Bulletin of Entomological Research 64, 371377.CrossRefGoogle Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Campbell, P. M. (2005). Species differentiation of insects and other multicellular organisms using matrix-assisted laser desorption/ionization time of flight mass spectrometry protein profiling. Systematic Entomology 30, 186190.CrossRefGoogle Scholar
Caprioli, G., Cristalli, G., Ragazzi, E., Molin, L., Ricciutelli, M., Sagratini, G., Seraglia, R., Zuo, Y. and Vittori, S. (2010). A preliminary matrix-assisted laser desorption/ionization time-of-flight approach for the characterization of Italian lentil varieties. Rapid Communications in Mass Spectrometry 24, 28432848.CrossRefGoogle ScholarPubMed
Carpenter, S., Mellor, P. S. and Torr, S. J. (2008). Control techniques for Culicoides biting midges and their application in the U.K. and northwestern Palaearctic. Medical and Veterinary Entomology 22, 175187.CrossRefGoogle ScholarPubMed
Dinant, S., Bonnemain, J. L., Girousse, C. and Kehr, J. (2010). Phloem sap intricacy and interplay with aphid feeding. Comptes Rendus Biologies 333, 504515.CrossRefGoogle ScholarPubMed
Feltens, R., Gorner, R., Kalkhof, S., Groger-Arndt, H. and von Bergen, M. (2010). Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evolutionary Biology 10, 95.CrossRefGoogle ScholarPubMed
Hellberg, W., Mellor, P. S., Torsteinsdottir, S. and Marti, E. (2009). Insect bite hypersensitivity in the horse: comparison of IgE-binding proteins in salivary gland extracts from Simulium vittatum and Culicoides nubeculosus. Veterinary Immunology and Immunopathology 132, 6267.CrossRefGoogle ScholarPubMed
Hoffmann, B., Scheuch, M., Höper, D., Jungblut, R., Holsteg, M., Schirrmeier, H., Eschbaumer, M., Goller, K. V., Wernike, K., Fischer, M., Breithaupt, A., Mettenleiter, T. C. and Beer, M. (2011). Novel orthobunyavirus in cattle, Europe, 2011. Emerging Infectious Disease 18, 469472.CrossRefGoogle Scholar
Hribar, L. J. (1990). A review of methods for recovering biting midge larvae (Diptera: Ceratopogonidae) from substrate samples. Journal of Agricultural Entomology 7, 7177.Google Scholar
Karger, A., Kampen, H., Bettin, B., Dautel, H., Ziller, M., Hoffmann, B., Süss, J. and Klaus, C. (2012). Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks and Tick-borne Diseases 3, 7889.CrossRefGoogle ScholarPubMed
Kaufmann, C., Schaffner, F., Ziegler, D., Pflüger, V. and Mathis, A. (2012). Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139, 248258.CrossRefGoogle ScholarPubMed
Kaufmann, C., Ziegler, D., Schaffner, F., Carpenter, S., Pflüger, V. and Mathis, A. (2011). Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Medical and Veterinary Entomology 25, 3238.CrossRefGoogle ScholarPubMed
Kettle, D. S. and Lawson, J. W. (1952). The early stages of British biting midges Culicoides Latreille (Diptera: Ceratopogonidae) and allied genera. Bulletin of Entomological Research 43, 421467.CrossRefGoogle Scholar
Khamala, C. P. (1975). Breeding habitats and biting activities of Culicoides (Diptera: Ceratopogonidae) at Lake Nakuru National Park, Kenya, with special reference to C. trifasciellus Goetghebuer. East African Medical Journal 52, 405412.Google Scholar
Kidder, T. R. (1997). Sugar reflotation: An alternative method for sorting flotation-derived heavy fraction samples. Journal of Field Archaeology 24, 3945.Google Scholar
Kline, D. L., Dukes, J. C. and Axtell, R. C. (1975). Salt marsh Culicoides (Diptera: Ceratopogonidae): comparison of larval sampling methods. Mosquito News 35, 147150.Google Scholar
Mazzeo, M. F., Giulio, B. D., Guerriero, G., Ciarcia, G., Malorni, A., Russo, G. L. and Siciliano, R. A. (2008). Fish authentication by MALDI-TOF mass spectrometry. Journal of Agricultural and Food Chemistry 56, 1107111076.CrossRefGoogle ScholarPubMed
Mellmann, A., Bimet, F., Bizet, C., Borovskaya, A. D., Drake, R. R., Eigner, U., Fahr, A. M., He, Y., Ilina, E. N., Kostrzewa, M., Maier, T., Mancinelli, L., Moussaoui, W., Prevost, G., Putignani, L., Seachord, C. L., Tang, Y. W. and Harmsen, D. (2009). High interlaboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of nonfermenting bacteria. Journal of Clinical Microbiology 47, 37323734.CrossRefGoogle ScholarPubMed
Mellor, P. S., Boorman, J. and Baylis, M. (2000). Culicoides biting midges: their role as arbovirus vectors. Annual Review of Entomology 45, 307340.CrossRefGoogle ScholarPubMed
Perera, M. R., Vargas, R. D. F. and Jones, M. G. K. (2005). Identification of aphid species using protein profiling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Entomologia Experimentalis et Applicata 117, 243247.CrossRefGoogle Scholar
Planzer, J., Kaufmann, C., Worwa, G., Gavier-Widen, D., Hofmann, M. A., Chaignat, V. and Thur, B. (2011). In vivo and in vitro propagation and transmission of Toggenburg orbivirus. Research in Veterinary Science 91, e163168.CrossRefGoogle ScholarPubMed
Rasmussen, L. D., Kristensen, B., Kirkeby, C., Rasmussen, T. B., Belsham, G. J., Bodker, R. and Botner, A. (2012). Culicoids as vectors of Schmallenberg virus. Emerging Infectious Disease 18, 12041206.CrossRefGoogle ScholarPubMed
Rieb, J. P. and Kremer, M. (1981). Ecologie des Cératopogonidés de la plaine d'Alsace. III. Cycle évolutif des Culicoides (Diptères, Cératopogonidés) d'un gîte fluviatile. Annales de Parasitologie Humaine et Comparée 56, 423439.CrossRefGoogle Scholar
Santos, C., Paterson, R. R. M., Venancio, A. and Lima, N. (2010). Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Applied Microbiology 108, 375385.CrossRefGoogle ScholarPubMed
Sauer, S. and Kliem, M. (2010). Mass spectrometry tools for the classification and identification of bacteria. Nature Reviews Microbiology 8, 7482.CrossRefGoogle ScholarPubMed
Sloet van Oldruitenborgh-Oosterbaan, M. M., van Poppel, M., de Raat, I. J., van den Boom, R. and Savelkoul, H. F. (2009). Intradermal testing of horses with and without insect bite hypersensitivity in The Netherlands using an extract of native Culicoides species. Veterinary Dermatology 20, 607614.CrossRefGoogle ScholarPubMed
Stevenson, L. G., Drake, S. K., Shea, Y. R., Zelazny, A. M. and Murray, P. R. (2010). Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. Journal of Clinical Microbiology 48, 34823486.CrossRefGoogle ScholarPubMed
Timmermann, S. E. and Briegel, H. (1993). Water depth and larval density affect development and accumulation of reserves in laboratory populations of mosquitoes. Bulletin of the Society of Vector Ecologists 18, 174187.Google Scholar
Uslu, U. and Dik, B. (2007). Description of breeding sites of Culicoides species (Diptera: Ceratopogonidae) in Turkey. Parasite 14, 173177.CrossRefGoogle ScholarPubMed
Van Veen, S. Q., Claas, E. C. J. and Kuijper, E. J. (2010). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. Journal of Clinical Microbiology 48, 900907.CrossRefGoogle ScholarPubMed
Venail, R., Mathieu, B., Setier-Rio, M. L., Borba, C., Alexandre, M., Viudes, G., Garros, C., Allene, X., Carpenter, S., Baldet, T. and Balenghien, T. (2011). Laboratory and field-based tests of deltamethrin insecticides against adult Culicoides biting midges. Journal of Medical Entomology 48, 351357.CrossRefGoogle ScholarPubMed
Wenk, C., Kaufmann, C., Schaffner, F. and Mathis, A. (2012). Molecular characterisation of Swiss Ceratopogonidae (Diptera) and evaluation of real-time PCR assays for the identification of Culicoides biting midges. Veterinary Parasitology 184, 258266.CrossRefGoogle ScholarPubMed
Zimmer, J. Y., Haubruge, E., Francis, F., Bortels, J., Simonon, G., Losson, B., Mignon, B., Paternostre, J., De Deken, R., De Deken, G., Deblauwe, I., Fassotte, C., Cors, R. and Defrance, T. (2008). Breeding sites of bluetongue vectors in northern Europe. Veterinary Record 162, 131.CrossRefGoogle ScholarPubMed