Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T07:38:52.396Z Has data issue: false hasContentIssue false

Establishment of the onset of host specificity in four phyllobothriid tapeworm species (Cestoda: Tetraphyllidea) using a molecular approach

Published online by Cambridge University Press:  27 April 2007

H. S. RANDHAWA*
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 4K6
G. W. SAUNDERS
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 4K6
M. D. B. BURT
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, CanadaE3B 4K6
*
*Corresponding author. Tel: +506 453 4583. Fax: +506 453 3583. E-mail: [email protected]

Summary

A parasitological survey in the Bay of Fundy, Canada, resulted in the recovery of mature specimens from 5 species of phyllobothriid tapeworms (Cestoda: Tetraphyllidea) from 4 rajid skates: Echeneibothrium canadensis and E. dubium abyssorum specimens from Amblyraja radiata; E. vernetae and Pseudanthobothrium n.sp. from Leucoraja erinacea and L. ocellata; and P. hanseni from A. radiata and Malacoraja senta. Partial sequence data of a variable region (D2) from the large subunit ribosomal DNA (LSU) were used here to determine the host distribution of immature specimens for 4 of these 5 species (E. d. abyssorum was not included in the analyses). Immature specimens from both Pseudanthobothrium spp. were identified in the same hosts as recorded previously for mature specimens, thus suggesting that there are mechanisms that prevent the attachment of the parasite in an ‘unsuitable’ host species. Immature E. canadensis specimens were recovered exclusively from A. radiata, whereas immature E. vernetae specimens were recovered from L. erinacea and A. radiata, despite the latter host species not harbouring mature E. vernetae specimens. Their presence in the latter host species may be explained by host restriction or resistance, which allows the attachment of the parasites in the ‘wrong’ host species, but not establishment or development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agusti, C., Aznar, F. J., Olson, P. D., Littlewood, D. T. J., Kostadinova, A. and Raga, J. A. (2005). Morphological and molecular characterization of tetraphyllidean merocercoids (Platyhelminthes: Cestoda) of striped dolphins (Stenella coeruleoalba) from the Western Mediterranean. Parasitology 130, 461474. DOI: 10.1017/S0031182004006754.CrossRefGoogle ScholarPubMed
Anderson, T. J. C., Blouin, M. S. and Beech, R. N. (1998). Population biology of parasitic nematodes: Applications of genetic markers. Advances in Parasitology 41, 219283.CrossRefGoogle ScholarPubMed
Brickle, P., Olson, P. D., Littlewood, D. T. J., Bishop, A. and Arkhipkin, A. I. (2001). Parasites of Loligo gahi, with a phylogenetically based identification of their cestode larvae. Canadian Journal of Zoology 79, 22892296. DOI: 10.1139/cjz-79-12-2289.CrossRefGoogle Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
Caira, J. N., Jensen, K. and Healy, C. J. (1999). On the phylogenetic relationships among tetraphyllidean, lecanicephalidean and diphyllidean tapeworm genera. Systematic Parasitology 42, 77151.CrossRefGoogle ScholarPubMed
Caira, J. N., Jensen, K. and Healy, C. J. (2001). Interrelationships among tetraphyllidean and lecanicephalidean cestodes. In Interrelationships of the Platyhelminthes (ed. Littlewood, D. T. J. and Bray, R. A.), pp. 135158. Taylor and Francis, London, UK.Google Scholar
Combes, C. (1995). Interactions Durables: Écologie et Évolution du Parasitisme. Éditions Masson, France.Google Scholar
Combes, C. (2001). Parasitism: the Ecology, Evolution and Intimate Interactions (English translation by de Buron, I. and Connors, V. A.). University of Chicago Press, Chicago, USA.Google Scholar
Devlin, C. M., Diamond, A. W. and Saunders, G. W. (2004). Sexing arctic terns in the field and laboratory. Waterbirds 27, 314320.Google Scholar
Euzet, L. (1994). Order Tetraphyllidea. In Keys to the Cestode Parasites in Vertebrates (ed. Khalil, L. F., Jones, A. and Bray, R. A.), pp. 149194. International Institute of Parasitology, CAB International Wallingford, UK.Google Scholar
Euzet, L. (1956). Une nouvelle espèce d'Echeneibothrium van Beneden, 1850. Bulletin de la Société Neuchâteloise des Sciences Naturelles 79, 3941.Google Scholar
Euzet, L. and Combes, C. (1980). Les problèmes de l'espèces chez les animaux parasites. Mémoire de la Société Zoologique de France 40, 239285.Google Scholar
Gene Codes Corporation (2005). Sequencher, version 4.5. Ann Arbor, Michigan.Google Scholar
Harper, J. T. and Saunders, G. W. (2001). The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Cahiers de Biologie Marine 42, 2538.Google Scholar
Holmes, J. C. (1987). The structure of helminth communities. International Journal for Parasitology 17, 203208.CrossRefGoogle ScholarPubMed
Holmes, J. C. (1990). Helminth communities in marine fishes. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. O. and Aho, J.), pp. 101113. Chapman and Hall, New York, USA.Google Scholar
Keeling, C. P. and Burt, M. D. B. (1996). Echeneibothrium canadensis n. sp. (Tetraphyllidea: Phyllobothriidae) in the spiral intestine of the thorny skate (Raja radiata) from the Canadian Atlantic Ocean. Canadian Journal of Zoology 74, 15901593.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S. and Poulin, R. (2004). Relationships between parasite abundance and the taxonomic distance among a parasite's host species: an example with fleas parasitic on small mammals. International Journal for Parasitology 34, 12891297. DOI: 10.1016/j.ijpara.2004.08.003.CrossRefGoogle ScholarPubMed
Linton, E. (1889). Notes on Entozoa of marine fishes. Report of the United States Fisheries Commission for 1886, 453511.Google Scholar
Linton, E. (1924). Notes on parasites of sharks and skates. Proceedings of the United States National Museum 64, 1114.CrossRefGoogle Scholar
Lymbery, A. J. (1989). Host specificity, host range and host preference. Parasitology Today 5, 298.CrossRefGoogle ScholarPubMed
Maddison, D. R. and Maddison, W. P. (2005). MacClade 4, version 4.07. Sinauer Associates. Sunderland, Massachusetts.Google Scholar
Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M. and Schad, G. A. (1982). The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists. Journal of Parasitology 68, 131133.CrossRefGoogle Scholar
Mariaux, J. and Olson, P. D. (2001). Cestode systematics in the molecular era. In Interrelationships of the Platyhelminthes (ed. Littlewood, D. T. J. and Bray, R. A.), pp. 127134. Taylor and Francis, London, UK.Google Scholar
McEachran, J. D. and Musick, J. A. (1975). Distribution and relative abundance of seven species of skates (Pisces: Rajidae) which occur between Nova Scotia and Cape Hatteras. Fishery Bulletin (United States National Marine Fisheries Service) 75, 110136.Google Scholar
McEachran, J. D., Boesh, D. F. and Musick, J. A. (1976). Food divisions within two sympatric species-pairs of skates (Pisces: Rajidae). Marine Biology 35, 301317.Google Scholar
McVicar, A. H. and Fletcher, T. C. (1970). Serum factors in Raja radiata toxic to Acanthobothrium quadripartitum (Cestoda: Tetraphyllidea), a parasite specific to R. naevus. Parasitology 61, 5563.CrossRefGoogle Scholar
Olson, P. D., Littlewood, D. T. J., Bray, R. A. and Mariaux, J. (2001). Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 19, 443467.CrossRefGoogle ScholarPubMed
Packer, D. B., Zetlin, C. A. and Vitaliano, J. J. (2003 a). Little skate, Leucoraja erinacea, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-175.Google Scholar
Packer, D. B., Zetlin, C. A. and Vitaliano, J. J. (2003 b). Winter skate, Leucoraja ocellata, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-179, 57pp.Google Scholar
Packer, D. B., Zetlin, C. A. and Vitaliano, J. J. (2003 c). Smooth skate, Malacoraja senta, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-177, 26pp.Google Scholar
Packer, D. B., Zetlin, C. A. and Vitaliano, J. J. (2003 d). Thorny skate, Amblyraja radiata, life history and habitat characteristics. NOAA Technical Memorandum NMFS-NE-178, 39pp.Google Scholar
Posada, D. and Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793808. DOI: 10.1080/10635150490522304.Google Scholar
Posada, D. and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818. DOI: 10.1093/bioinformatics/14.9.817.CrossRefGoogle ScholarPubMed
Poulin, R. (1998). Evolutionary Ecology of Parasites: from Individuals to Communities. Chapman and Hall, London, UK.Google Scholar
Poulin, R. (1992). Determinants of host specificity in parasites of freshwater fishes. International Journal for Parasitology 22, 753758.Google Scholar
Poulin, R. and Mouillot, D. (2003). Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126, 473480. DOI: 10.1017/S0031182003002993.CrossRefGoogle ScholarPubMed
Poulin, R. and Mouillot, D. (2004). The relationship between specialization and local abundance: the case of helminth parasites of birds. Oecologia 140, 372378. DOI: 10.1007/s00442-004-1593-4.CrossRefGoogle ScholarPubMed
Reyda, F. and Olson, P. D. (2003). Cestodes of cestodes of Peruvian freshwater stingrays. Journal of Parasitology 89, 10181024.Google Scholar
Rohde, K. (1980). Host specificity indices of parasites and their application. Experientia 36, 13691371.CrossRefGoogle Scholar
Rohde, K. (1994). Niche restriction in parasites: proximate and ultimate causes. Parasitology 109 (Suppl.), S69S84.CrossRefGoogle ScholarPubMed
Rohde, K. (2005). Latitudinal, longitudinal and depth gradients. In Marine Parasitology (ed Rohde, K.), pp. 348351. CSIRO Publishing, Collingwood, Australia.Google Scholar
Rohde, K. and Rohde, P. (2005). The ecological niches of parasites. In Marine Parasitology (ed Rohde, K.), pp. 286293. CSIRO Publishing, Collingwood, Australia.Google Scholar
Saunders, G. W. (1993). Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. Journal of Phycology 29, 251254.CrossRefGoogle Scholar
Scott, W. B. and Messieh, S. N. (1976). Common Canadian Atlantic Fishes. The Huntsman Marine Laboratory, St Andrews, New Brunswick, Canada.Google Scholar
Scott, W. B. and Scott, M. G. (1988). Atlantic Fishes of Canada. Canadian Bulletin of Fisheries and Aquatic Sciences 219, 1731.Google Scholar
Swofford, D. L. (2002). PAUP* Phylogenetic Analysis Using Parsimony (*and other Methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Williams, H. H. (1960). The intestine in members of the genus Raja and host-specificity in the Tetraphyllidea. Nature, London 188, 514516.Google Scholar
Williams, H. H. (1961). Observations of Echeneibothrium maculatum (Cestoda: Tetraphyllidea). Journal of the Marine Biology Association of the United Kingdom 41, 631652.CrossRefGoogle Scholar
Williams, H. H. (1964). Some new and little known cestodes from Australian elasmobranchs with a brief discussion on their possible use in problems of host taxonomy. Parasitology 54, 737748.Google Scholar
Williams, H. H. (1966). The ecology, functional morphology and taxonomy of Echeneibothrium Beneden, 1849 (Cestoda: Tetraphyllidea), a revision of the genus and comments on Discobothrium Beneden, 1870, Pseudanthobothrium Baer, 1956, and Phormobothrium Alexander, 1963. Parasitology 56, 227285.Google Scholar
Williams, H. H. (1968). The taxonomy, ecology and host-specificity of some Phyllobothriidae (Cestoda: Tetraphyllidea), a critical revision of Phyllobothrium Beneden, 1849 and comments on some allied genera. Philosophical Transactions of the Royal Society of London, B 253, 231307.Google Scholar
Williams, H. H. (1969). The genus Acanthobothrium Beneden 1849 (Cestoda: Tetraphyllidea). Nytt Magasin für Zoologi 17, 156.Google Scholar