Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T13:36:44.313Z Has data issue: false hasContentIssue false

Eryngial (trans-2-dodecenal), a bioactive compound from Eryngium foetidum: its identification, chemical isolation, characterization and comparison with ivermectin in vitro

Published online by Cambridge University Press:  21 October 2013

W. M. FORBES*
Affiliation:
Department of Life Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
W. A. GALLIMORE
Affiliation:
Department of Chemistry, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
A. MANSINGH
Affiliation:
Department of Life Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
P. B. REESE
Affiliation:
Department of Chemistry, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
R. D. ROBINSON
Affiliation:
Department of Life Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica, West Indies
*
* Corresponding author: Department of Biology, College of Health, Environment and Science, Slippery Rock University of Pennsylvania, 1 Morrow Way, Slippery Rock, PA 16057, USA. E-mail: [email protected]

Summary

Methanol-water (4:1, v/v) crude extracts (50 mg mL−1) of 25 Jamaican medicinal plants were screened in vitro for anthelmintic activity using infective third-stage larvae of Strongyloides stercoralis. The most effective extract was further chemically scrutinized to isolate and identify the source of the bioactivity, and the efficacy of this compound was compared with ivermectin. Eosin exclusion (0·1 mg mL−1) served as the indicator of mortality in all bioassays. A crude extract of Eryngium foetidum (Apiaceae) was significantly (Probit Analysis, P<0·05) more potent than the other plant extracts, taking 18·9 h to kill 50% (LT50) of the larvae. Further, the petrol extract of E. foetidum was significantly more effective (Probit Analysis, P<0·05) at killing the larvae (LT50, 4·7 h) than either its methanol–water or dichloromethane extract. The latter two effected less than 1% larval mortality after 120 h. With bioassay-driven column chromatography of the petrol extract, trans-2-dodecenal (eryngial) was identified and chemically isolated as the main anthelmintic compound in E. foetidum. There was a significant difference between the 24 h LD50 values (mm) of trans-2-dodecenal (0·461) and ivermectin (2·251) but there was none between the 48 h LD50 values (mm): trans-2-dodecenal (0·411) and ivermectin (0·499) in vitro.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, C. D. (1972). Flowering Plants of Jamaica. The University Press, The University of the West Indies, Mona, Jamaica.Google Scholar
Adenusi, A. A., Oke, A. O. and Adenusi, A. O. (2003). A comparison of ivermectin and thiabendazole in the treatment of uncomplicated human Strongyloides stercoralis infection. African Journal of Biotechnology 2, 465469.Google Scholar
Albert, V. A. and Struwe, L. (1997). Phylogeny and classification of Voyria (saprophytic Gentianaceae). Brittonia 49, 466479.Google Scholar
Asprey, G. F. and Thornton, P. (1953). Medicinal plants of Jamaica. Part I. West Indian Medical Journal 2, 223241.Google Scholar
Atchison, W. D., Geary, T. G., Manning, B., Van de Waa, E. A. and Thompson, D. P. (1992). Comparative neuromuscular blocking actions of levamisole and pyrantel-type anthelmintics on rat and gastrointestinal nematode somatic muscle. Taxonomy and Applied Pharmacology 112, 133143.Google Scholar
Ayensu, E. (1981). Medicinal Plants of the West Indies. Reference Publications, Algonac, MI, USA.Google Scholar
Bezjak, B. (1968). A clinical trial of thiabendazole in strongyloidiasis. American Journal of Tropical Medicine and Hygiene 17, 733736.Google Scholar
Boonmars, T., Khunkitti, W. and Sithithaworn, P. (2005). In vitro antiparasitic activity of extracts of Cardiospermum halicacabum against third-stage larvae of Strongyliodes stercoralis . Parasitology Research 97, 417419.CrossRefGoogle ScholarPubMed
Busvine, J. R. (1972). A Critical Review of the Techniques for Testing Insecticides, 2nd Edn. Commonwealth Agricultural Bureaux, London, UK.Google Scholar
Campbell, S. (1974). Bush teas a cure-all. “Corollary to folklore and food habits.” Jamaica Journal 8, 6065.Google Scholar
Campbell, W. C. (1989). Ivermectin and Abamectin. Springer-Verlag, NY, USA.Google Scholar
Chhetri, R. B. (2006). Trends in ethnodomestication of some wild plants in Meghalaya, Northeast India. Indian Journal of Traditional Knowledge 5, 342347.Google Scholar
Chippendale, G. M. and Mann, R. A. (1972). Feeding behaviour of Angoumoris grain moth larvae. Journal of Insect Physiology 18, 8794.Google Scholar
Chisholm, M. D., Palaniswany, P. and Underhill, E. W. (1982). Orientation disruption of male forest tent caterpillar, Malacosoma disstria (Hübner) (Lepidoptera: Lasiocampidae), by air permeation with sex pheromone components. Environmental Entomology 11, 12481250.Google Scholar
Cornish, H. H. (1975). Toxicology. In The Basic Science of Poisons (ed. Casarell, L. J. and Doull, J.), pp. 512513. Macmillan Publishing Co., NY, USA.Google Scholar
Cruz, T., Reboucas, G. and Rocha, H. (1966). Fatal strongyloidiasis in patients receiving corticosteroids. New England Journal of Medicine 275, 10931096.Google Scholar
Currie, B. J., Harumal, P., McKinnon, M. and Walton, S. F. (2004). First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei . Clinical Infectious Diseases 39, 812.Google Scholar
Dagar, H. S. and Dagar, J. S. (1991). Plant folk medicine among the Nicobarese of Katchal Island, India. Economic Botany 45, 114119.Google Scholar
Davidson, R. A., Fletcher, R. H. and Chapman, L. E. (1984). Risk factors for strongyloidiasis: a case–control study. Archives of Internal Medicine 144, 321324.CrossRefGoogle ScholarPubMed
Dawkins, H. J. S. and Grove, D. I. (1982). Attempts to establish infections with Strongyloides stercoralis in mice and other laboratory animals. Journal of Helminthology 56, 2326.CrossRefGoogle ScholarPubMed
Despommier, D. D., Gwadz, R. W., Hotez, P. J. and Knirsch, C. A. (2005). Parasitic Diseases, 5th Edn. Apple Trees Productions, New York, NY, USA.Google Scholar
Echevarria, F. A. M. and Trindade, G. N. P. (1989). Anthelmintic resistance by Haemonchus contortus to ivermectin in Brazil: a preliminary report. Veterinary Record 124, 147148.Google Scholar
Finney, D. J. (1975). Probit Analysis. A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, Cambridge, UK.Google Scholar
Fisher, M. H. (1985). The avermectins. In Recent Advances in the Chemistry of Insect Control, pp. 5272. Symposium Proceedings of the Royal Society of Chemistry, London, UK.Google Scholar
Forbes, W. M. and Steglich, C. (2010). Methods of Treating Infectious Diseases. United States Patent and Trademark Office. Patent number 11/839, 392, USA.Google Scholar
Garcia, L. S. and Bruckner, D. A. (1988). Diagnostic Medical Parasitology. Elsevier Science Publishing Company, New York, NY, USA.Google Scholar
Genta, R. M. (1989). Strongyloides stercoralis: loss of ability to disseminate after repeated passage in laboratory beagles. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 539541.Google Scholar
Gill, G. V. and Bell, D. R. (1979). Strongyloides stercoralis infection in former Far East prisoners of war. British Medical Journal 2, 572574.CrossRefGoogle ScholarPubMed
Gill, J. H., Redwin, J. M., van Wyk, J. A. and Lacey, E. (1991). Detection of resistance to ivermectin in Haemonchus contortus . International Journal for Parasitology 21, 771776.Google Scholar
Goulart, E. G., Jourdan, M. C., Brazil, R. P., Brazil, B. G., Cosendey, A. E., Bar, M., Do Carmo, E. C. and Gilbert, B. (1977). Ecological control of hookworm and strongyloidiasis. Journal of Helminthology 51, 131132.Google Scholar
Grove, D. I. (1980). Strongyloidiasis in allied ex-prisoners of war in South-East Asia. British Medical Journal 1, 599601.Google Scholar
Grove, D. I. (1982 a). Strongyloides ratti and S. stercoralis: the effects of thiabendazole, mebendazole, and cambendazole in infected mice. American Journal of Tropical Medicine and Hygiene 31, 469476.Google Scholar
Grove, D. I. (1982 b). Treatment of strongyloidiasis with thiabendazole: an analysis of toxicity and effectiveness. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 114118.Google Scholar
Grove, D. I. (1984). Strongyloidiasis. In Tropical and Geographical Medicine (ed. Warren, K. S. and Mahmoud, A. A. F.), pp. 373379. McGraw-Hill Book Company, New York, NY, USA.Google Scholar
Grove, D. I. (1989). Treatment. In Strongyloidiasis – A Major Round Worm Infection of Man, pp. 199231. Taylor & Francis, London, UK.Google Scholar
Grove, D. I. and Northern, C. (1982). Infection and immunity in dogs infected with a human strain of Strongyloides stercoralis . Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 833838.Google Scholar
Gustafsson, L. L., Beerman, B. and Abdi, Y. A. (1987). Handbook of Drugs for Tropical Parasitic Infections. Taylor and Francis, London, UK.Google Scholar
Halton, D. W. and Arme, C. (1971). In vitro technique for detecting tegument damage in Diclidophora merlangi: possible screening method for selection of undamaged tissues of organisms prior to physiological investigation. Experimental Parasitology 30, 5457.Google Scholar
Hogg, R. A. (1978). Death after cambendazole dosing. Veterinary Record 103, 477.CrossRefGoogle ScholarPubMed
Holden-Dye, L. and Walker, R. J. (2007). Anthelmintic drugs. In The C. elegans Research Community, WormBook (ed. Maricq, V. and McIntire, S. L.), pp. 28. University of Southampton, UK.Google Scholar
Honychurch, P. N. (1980). Caribbean Wild Plants and their Uses. Macmillan Caribbean, Barbados.Google Scholar
Ingra-Siegman, U., Kapila, R., Sen, P., Kaminski, Z. C. and Louria, D. B. (1981). Syndrome of hyperinfection with Strongyloides stercoralis . Reviews of Infectious Diseases 3, 397407.Google Scholar
Ito, T., Kawashima, K., Nakahara, M., Nakanishi, K. and Terahara, A. (1964). Effects of sterol on feeding and nutrition of the silkworm Bombyx mori L. Journal of Insect Physiology 10, 225238.Google Scholar
Jackson, F. and Coop, R. L. (2000). The development of anthelmintic resistance in sheep nematodes. Parasitology 120, 95107.Google Scholar
Jacobson, M. (1981). Neem research in the U.S. Department of Agriculture: chemical, biological and cultural aspects. In Proceedings, First International Neem Conference, Rottach-Egern, Germany.Google Scholar
Jacobson, M. (1986). The neem tree: natural resistance par excellence. In Natural Resistance of Plants to Insects (ed. Green, M. B. and Hedin, P. A.), pp. 220232. American Chemical Society Symposium Series 296, Washington, DC, USA.Google Scholar
Kar, A. and Borthakur, S. K. (2007). Wild vegetables sold in local markets of Karbi Anglong, Assam. Indian Journal of Traditional Knowledge 6, 169172.Google Scholar
Kubo, I., Fujita, K., Kubo, A., Nihei, K. and Ogura, T. (2004). Antibacterial activity of coriander volatile compounds against Salmonella choleraesuis . Journal of Agricultural and Food Chemistry 52, 33293332.Google Scholar
Lal, J., Chandra, S., Raviprakash, V. and Sabir, M. (1976). In vitro anthelmintic action of some indigenous medicinal plants on Ascardia galli worms. Indian Journal of Physiological Pharmacology 20, 6468.Google Scholar
Leake, L. D. and Walker, R. J. (1980). Invertebrate Neuropharmacology. Blackie & Son, London, UK.Google Scholar
Lee, D. L. and Atkinson, H. J. (1965). Physiology of Nematodes, 2nd Edn. Macmillan Press, London, UK.Google Scholar
Main, D. C. and Vass, D. E. (1980). Cambendazole toxicity in calves. Australian Veterinary Journal 56, 237238.Google Scholar
Mansfield, L. S. and Schad, G. A. (1992). Ivermectin treatment of naturally acquired and experimentally induced Strongyloides stercoralis infections in dogs. Journal of the American Veterinary Medical Association 201, 726730.Google Scholar
Marti, H., Haji, H. J., Savioli, L., Chwaya, H. M., Mgeni, A. F., Ameir, J. S. and Hatz, C. (1996). A comparative trial of a single-dose ivermectin versus three days of albendazole for treatment of Strongyloides stercoralis and other soil-transmitted helminth infections in children. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 477481.Google Scholar
Matthews, G. A. (2000). Pesticide Application Methods, 3rd Edn. Blackwell, Oxford, UK.CrossRefGoogle Scholar
Naquira, C., Jimenez, G., Guerra, J. G., Bernal, R., Nalin, D. R., Neu, D. and Aziz, M. (1989). Ivermectin for human strongyloidiasis and other intestinal helminths. American Journal of Medicine and Hygiene 40, 304309.Google ScholarPubMed
Naranjo, D., Gil, E., Naranjo, M. and Gay, A. S. (1995). Ten medicinal plant recipes from Guyana, Aragua State, Venezuela. Newsletter – G-15 Gene Banks for Medicinal Plants 718, 1819.Google Scholar
Nolan, T. J., Nutman, T. B. and Schad, G. A. (2011). Strongyloidosis. In Oxford Textbook of Zoonoses: Biology, Clinical Practice, and Public Health Control, 2nd Edn. (ed. Palmer, S. R. Soulsby, L., Torgerson, P. and Brown, D. W. G.), pp. 717726. Oxford University Press, Oxford, UK.Google Scholar
Paul, J. H. A., Seaforth, C. E. and Tikasingh, T. (2011). Eryngium foetidum L.: a review. Fitoterapia 82, 302308.Google Scholar
Powell, R. W., Moss, J. P. and Nagar, D. (1980). Strongyloidiasis in immunocompromised hosts: presentation as massive lower gastrointestinal bleeding. Archives of Internal Medicine 140, 10611063.Google Scholar
Prasad, P. R. C., Reddy, C. C., Raza, S. H. and Dutt, C. B. S. (2008). Folklore medicinal plants of North Andaman Islands, India. Fitoterapia 79, 458464.CrossRefGoogle ScholarPubMed
Ramcharan, C. (1999). Culantro: a much utilized, little-understood herb. In Perspectives on New Crops and New Uses (ed. Janik, J.), pp. 506509. ASHA Press, Alexandria, VA, USA.Google Scholar
Raner, G. M., Chiang, E. W., Vaz, A. D. N. and Coon, M. J. (1997). Mechanism-based inactivation of cytochrome P450 2B4 by aldehydes: relationship to aldehyde deformation via a peroxyhemiacetal intermediate. Biochemistry 36, 48954902.Google Scholar
Robinson, R. D. and Arme, C. (1985). Echinococcus granulosus: failure of the eosin-exclusion test to demonstrate death of protoscoleces. Annals of Tropical Medicine and Parasitology 79, 117.Google Scholar
Robinson, R. D., Williams, L. A. D., Lindo, J. F., Terry, S. I. and Mansingh, A. (1990). Inactivation of Strongyloides stercoralis filariform larvae in vitro by six Jamaican plant extracts and three commercial anthelmintics. West Indian Medical Journal 39, 213217.Google Scholar
Rowe, D. J. (1998). Aroma chemical for savoury flavours. Perfumer and Florist 23, 914.Google Scholar
Sandground, J. H. (1928). Some studies on susceptibility, resistance and acquired immunity to infection with Strongyloides stercoralis (Nematoda) in dogs and cats. American Journal of Hygiene 8, 507538.Google Scholar
Schad, G. A., Hellman, M. E. and Muncey, D. W. (1984). Strongyloides stercoralis: hyperinfection in immunosuppressed dogs. Experimental Parasitology 57, 287296.Google Scholar
Shikiya, K., Kinjo, N. and Uehara, T. (1992). Efficacy of ivermectin against Strongyloides stercoralis in humans. Internal Medicine 31, 310312.Google Scholar
Siddiqui, A. A. and Berk, S. L. (2001). Diagnosis of Strongyloides stercoralis infection. Clinical Infectious Diseases 33, 10401047.Google Scholar
Sloane, H. (1725). A Voyage to the Islands of Madera, Barbados, Nieves, St.Christopher's and Jamaica with Natural History, etc. London, UK.Google Scholar
Terry, S. I. (1987). Strongyloides stercoralis – a dangerous helmintic infection. Postgraduate Doctor 10, 152162.Google Scholar
Tikasingh, E. S. (1981). Human parasites in the Commonwealth Caribbean. A Paper Prepared for the Technical Workshop on the Control of Anemia in the English-speaking Caribbean. PAHO/CAREC, Kingston, Jamaica.Google Scholar
Trease, G. E. and Evans, W. C. (1934). Pharmacognosy. Cassell and Collier Macmillan Publishers, London, UK.Google Scholar
Waterman, P. G. (1986). A phytochemist in the African rain forest. Phytochemistry 25, 317.Google Scholar
Wheeler, J. W., Meinwald, J., Hurst, J. J. and Eisner, T. (1964). Trans-2-dodecenal and 2-methyl-1, 4-quinone produced by a millipede. Science 144, 540541.Google Scholar
Williams, L. A. D. (1992). Biological activities in leaf extracts of Artocarpus altilis Park and other Jamaican plants. PhD thesis. The University Press, The University of the West Indies, Mona, Jamaica.Google Scholar
Wilson, A. B. (1993). Pesticidal properties of selected plant extracts and their formulations. MPhil thesis. The University Press, The University of the West Indies, Mona, Jamaica.Google Scholar
Zanno, P. R., Muira, I., Nakanishi, K. and Elder, D. L. (1975). Structure of the insect phagorepellent azadirachtin. Application of PRFT/-CWD carbon−13 nuclear magnetic resonance. Journal of the American Chemical Society 97, 19751977.Google Scholar