Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T08:11:42.238Z Has data issue: false hasContentIssue false

The epidemiology of canine visceral leishmaniasis in southern France: classical theory offers another explanation of the data

Published online by Cambridge University Press:  06 April 2009

Christopher Dye
Affiliation:
Department of Entomology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT

Summary

This paper describes a compartmental model incorporating biological details of the transmission of canine visceral leishmaniasis in southern France. In contrast to earlier, empirical models (Jolivet, 1977; Rioux, Croset & Lanotte, 1977) the new model (1) predicts a threshold density of sandflies below which transmission cannot be sustained, (2) suggests that, until better data become available, the maximum prevalence of infection obtained at high sandfly density should be considered an unknown quantity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. (1982). The Population Dynamics of Infectious Diseases. London: Chapman & Hall.Google Scholar
Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases. London: Griffin.Google Scholar
Dye, C. (1986). Vectorial Capacity: must we measure all its components? Parasitology Today 2, 203–9.Google Scholar
Garrett-Jones, C. (1964). Prognosis for the interruption of malaria transmission through assessment of the mosquito's vectorial capacity. Nature, London 204, 1173–5.CrossRefGoogle ScholarPubMed
Jolivet, E. (1977). Essai de modélisation analytique du developpment d'un foyer de leishmaniose canine. Ecologie des Leishmanioses, pp. 307310. Paris: Colloques Internationaux du CNRS No. 239.Google Scholar
Kermack, W. O. & McKendrick, A. G. (1931). Mathematical analysis of Dr Napier's statistics of house infection in kala-azar. Indian Journal of Medical Research 19, 343–50.Google Scholar
Killick-Kendrick, R. & Rioux, J.-A. (1981). The Cévennes focus of leishmaniasis in southern France and the biology of the vector, Phlebotomus ariasi. In Parasitological Topics (ed. Canning, E. U.), pp. 136145. Society of Protozoologists, Special Publication No. 1.Google Scholar
Lanotte, G., Rioux, J.-A., Périères, J. & Vollhardt, Y. (1979). Ecologie des leishmanioses dans le sud de la France. 10. Les formes évolutives de la leishmaniose viscerale canine. Elaboration d'une typologie bioclinique à finalité épidemiologique. Annales de Parasitologie 54, 277–95.Google Scholar
Lysenko, A. J. & Beljaev, A. E. (1987). Quantitative approaches to epidemiology. In The Leishmaniases in Biology and Medicine, vol. 1 (ed. Peters, W. and Killick-Kendrick, R.), pp. 263290. London: Academic Press.Google Scholar
Nedelman, J. (1984). Inoculation and recovery rates in the malaria model of Dietz, Molineaux & Thomas. Mathematical Biosciences 69, 209–33.CrossRefGoogle Scholar
Rioux, J.-A., Aboulker, J. P., Lanotte, G., Killick-Kendrick, R. & Martini-Dumas, A. (1985). Ecologie des lejshmanioses dans le sud do la France. 21. Influence de la temperature sur le développment de Leishmania infantum Nicolle, 1908 chez Phlebotomus ariasi Tonnoir, 1921. Etude expérimentale. Annales de Parasitologie Humaine et Comparée 60, 221–9.CrossRefGoogle Scholar
Rioux, J.-A., Croset, H. & Lanotte, G. (1977). Ecologie d'un foyer méditerranéen de leishmaniose viscérale. Essai de modélisation. In Ecologie des Leiahmanioses, pp. 295305. Paris: Colloques Internationaux du CNRS No. 239.Google Scholar
Rioux, J. A., Lanotte, G., Croset, H. & Dedet, J.-P. (1972). Ecologie des leishmanioses dans le sud de la France. 5. Pouvoir infestant comparé des diverses formes de leishmaniose canine vis-à-vis de Phlebotomus ariasi Tonnoir, 1921. Annales de Parasitologie 47, 413–19.Google Scholar