Published online by Cambridge University Press: 06 April 2009
Glucose uptake was examined in adult specimens of Proterometra macrostoma (Trematoda: Digenea) recovered from the stomach (endoparasites) and gills (ectoparasites) of longear sunfish, Lepomis megalotis. The endoparasitic forms transported glucose directly through the external body surface by Na+-independent, facilitated diffusion, but the ectoparasites absorbed glucose by free diffusion alone. To determine how this transport function is regulated, cercariae were incubated in solutions having Na+ concentrations normally found in fish gut (50 mM) and in fresh water (0·5 mM). Glucose transport capacity was retained in 50 mM Na+, but disappeared in worms incubated for 1–3 days in 0·5 min Na+. Returning worms from the latter solution to one containing 50 mM Na+ fully restored glucose transport within a day. By contrast, incubation up to 5 days in 0·5 mM Na+ had no effect on glucose transport in endoparasitic adults of P. macrostoma and cercariae of P. edneyi. Thus, cutaneous sugar transport function in the migrating larva of P. macrostoma is subject to indirect regulation by environmental Na+.