Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T17:08:52.323Z Has data issue: false hasContentIssue false

Energy metabolism and its regulation in the adult liver fluke Fasciola hepatica

Published online by Cambridge University Press:  06 April 2009

G. M. Lloyd
Affiliation:
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA

Summary

The adult liver fluke, Fasciola hepatica, inhabits the bile duct of its final host, usually cattle or sheep. The veterinary aspects of infection with F. hepatica can represent a major problem and consequently fascioliasis can have serious economic effects. As recently as 1972 the loss in revenue due to liver fluke infestations in the UK was estimated at an incredible £50 million per annum (Coles, 1975). Not only can F. hepatica infect cattle and sheep, but also outbreaks of human disease have been reported. The last serious outbreak in Britain was in 1968 when at least 49 cases were identified (Ashton, Boardman, D'Sa, Everall & Houghton, 1970; Hardman, Jones & Davies, 1970).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, S. L., Northup, J. K. & Mansour, T. E. (1976). Adenosine cyclic 3',5'-monophosphate in the liver fluke, Fasciola hepatica. I. Activation of adenylate cyclase by 5-hydroxytryptamine. Molecular Pharmacology 12, 4958.Google ScholarPubMed
Andreini, G. C., Beretta, C., Faustini, R. & Gallina, G. (1970). Spectrofluorometric and chromatographic characterisation of a butanol extract from Fasciola hepatica. Experientia 26, 166–7.CrossRefGoogle ScholarPubMed
Ashton, W. I. G., Boardman, P. L., D'Sa, C. J., Everall, P. H. & Houghton, A. W. J. (1970). Human fascioliasis in Shropshire. British Medical Journal 3, 500–2.CrossRefGoogle ScholarPubMed
Barrett, J. (1975). The occurrence and intracellular distribution of nucleoside diphosphate kinase in parasitic helminths. Journal of Parasitology 61, 545–6.CrossRefGoogle Scholar
Barrett, J. (1978). Activation of succinate dehydrogenase from adult Fasciola hepatica (Trematoda). Parasitology 76, 269–75.CrossRefGoogle ScholarPubMed
Barrett, J. (1981). The Biochemistry of Parasitic Helminths. London and Basingstoke: Macmillan.CrossRefGoogle Scholar
Barrett, J. & Beis, I. (1973). Nicotinamide and adenosine nucleotide levels in Ascaris lumbricoides, Hymenolepis diminuta and Fasciola hepatica. International Journal for Parasitology 3, 271–3.CrossRefGoogle ScholarPubMed
Barrett, J., Coles, G. C. & Simpkin, K. G. (1978). Pathways of acetate and propionate production in adult Fasciola hepatica. International Journal for Parasitology 8, 117–23.CrossRefGoogle ScholarPubMed
Barrett, J. & Körting, W. (1976). Studies on beta-oxidation in the adult liver fluke, Fasciola hepatica. International Journal for Parasitology 6, 155–7.CrossRefGoogle ScholarPubMed
Barrett, J. & Lloyd, G. M. (1981). A novel phosphagen phosphotransferase in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). Parasitology 82, 1116.CrossRefGoogle ScholarPubMed
Beddok, R. A. & Mansour, T. E. (1979). Antagonism of serotonin-activated adenylate cyclase in the liver fluke, Fasciola hepatica by levorphanol and dextrorphan. Biochemical Pharmacology 28, 3689–92.CrossRefGoogle ScholarPubMed
Behm, C. A. & Bryant, C. (1975). Studies of regulatory metabolism in Moniezia expansa: the role of phosphofructokinase (with a note on pyruvate kinase). International Journal for Parasitology 5, 339–46.CrossRefGoogle ScholarPubMed
Behm, C. A. & Bryant, C. (1980). Regulatory properties of a partially purified preparation of pyruvate kinase from Fasciola hepatica. International Journal for Parasitology 10, 107–15.CrossRefGoogle ScholarPubMed
Behm, C. A. & Bryant, C. (1982). Phosphoenolpyruvate carboxykinase from Fasciola hepatica. International Journal for Parasitology 12, 271–8.CrossRefGoogle ScholarPubMed
Beis, I. & Barrett, J. (1979). The contents of adenine nucleotides and glycolytic and tricarboxylic acid cycle intermediates in activated and non-activated plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). International Journal for Parasitology 9, 465–71.CrossRefGoogle Scholar
Beis, I. & Theophilidis, G. (1982). Phosphofructokinase in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). International Journal for Parasitology 12, 389–93.CrossRefGoogle ScholarPubMed
Bennett, J. L. & Gianutsos, G. (1977). Distribution of catecholamines in immature Fasciola hepatica: a histochemical and biochemical study. International Journal for Parasitology 7, 221–5.CrossRefGoogle ScholarPubMed
Beretta, C. & Locatelli, A. (1968). Inhibitory activity of 8-β-carbobenzyl oxyaminomethyl 1,6-dimethyl 10-α-ergoline towards stimulant effects by 5-hydroxytryptamine and amphetamine on liver fluke. Journal of Pharmacy and Pharmacology 20, 744–8.CrossRefGoogle Scholar
Boray, J. C. (1969). Experimental fascioliasis in Australia. Advances in Parasitology 7, 96210.Google ScholarPubMed
Bryant, C. & Smith, M. J. H. (1963). Some aspects of intermediary metabolism in Fasciola hepatica and Polycelis nigra. Comparative Biochemistry and Physiology 9, 189–94.CrossRefGoogle ScholarPubMed
Bryant, C., Smith, M. J. H. & Williams, J. P. G. (1963). Effects of some anthelmintic drugs on the metabolism of radioactive glucose by the liver fluke, Fasciola hepatica L. Experimental Parasitology 14, 218–20.CrossRefGoogle Scholar
Bryant, C. & Williams, J. P. G. (1962). Some aspects of the metabolism of the liver fluke, Fasciola hepatica L. Experimental Parasitology 12, 372–6.CrossRefGoogle Scholar
Buc, H., Demaugre, F. & Le Roux, J. P. (1978). The kinetic effects of oxalate on liver and erythrocyte pyruvate kinases. Biochemical and Biophysical Research Communications 85, 774–9.CrossRefGoogle ScholarPubMed
Bueding, E. (1949). Metabolism of parasitic helminths. Physiological Reviews 29, 195218.CrossRefGoogle ScholarPubMed
Bueding, E. & Fisher, J. (1966). Factors affecting the inhibition of phosphofructokinase activity of Schistosoma mansoni by trivalent organic antimonials. Biochemical Pharmacology 15, 1197–211.CrossRefGoogle ScholarPubMed
Buist, R. A. & Schofield, P. J. (1971). Some aspects of the glucose metabolism of Fasciola hepatica. International Journal of Biochemistry 2, 377–83.CrossRefGoogle Scholar
Burren, C. H., Ehrlich, I. & Johnson, P. (1967). Excretion of lipids by the liver fluke (Fasciola hepatica L). Lipids 2, 353–6.CrossRefGoogle ScholarPubMed
Cheah, K. S. & Prichard, R. K. (1975). The electron transport systems of Fasciola hepatica mitochondria. International Journal for Parasitology 5, 183–6.CrossRefGoogle ScholarPubMed
Chen, C. & Awapara, J. (1969). Intracellular distribution of enzymes catalysing succinate production from glucose in ‘Rangia’ mantle. Comparative Biochemistry and Physiology 30, 727.CrossRefGoogle Scholar
Chou, T. C., Bennett, J. & Bueding, E. (1972). Occurrence and concentrations of biogenic amines in trematodes. Journal of Parasitology 58, 1098–102.CrossRefGoogle ScholarPubMed
Coles, G. C. (1975). Fluke Biochemistry–Fasciola and Schistosoma. Helminthological Abstracts 44 A, 147–62.Google Scholar
Coles, G. C., Simpkin, K. G. & Barrett, J. (1980). Fasciola hepatica: energy sources and metabolism. Experimental Parasitology 49, 122–7.CrossRefGoogle ScholarPubMed
Cori, C. F. (1942). In A Symposium on Respiratory Enzymes. Madison, Wisc: University of Wisconsin Press.Google Scholar
Cornish, R. A., Behm, C. A., Butler, R. W. & Bryant, C. (1977). The in vivo effects of rafoxanide on the energy metabolism of Fasciola hepatica. International Journal for Parasitology 7, 217–20.CrossRefGoogle ScholarPubMed
Cornish, R. A. & Bryant, C. (1976 a). Changes in energy metabolism due to anthelmintics in Fasciola hepatica. International Journal for Parasitology 6, 393–8.CrossRefGoogle ScholarPubMed
Cornish, R. A. & Bryant, C. (1976 b). The metabolic integrity of Fasciola hepatica during in vitro maintenance. International Journal for Parasitology 6, 387–92.CrossRefGoogle ScholarPubMed
Dawes, B. (1963). Some observations on Fasciola hepatica L. during feeding operations in the hepatic parenchyma of the mouse, with a note on liver damage in this host. Parasitology 53, 135–43.CrossRefGoogle Scholar
Dawes, B. & Hughes, D. L. (1964). Fascioliasis: the invasive stages of Fasciola hepatica in mammalian hosts. Advances in Parasitology 2, 97168.CrossRefGoogle ScholarPubMed
Du, Z–H. & Mansour, T. E. (1982). Effect of adenylate cyclase activators and Mg2+ on the binding and the electron spin resonance spectra of N- methylmaleimide nitroxide in membrane particles from the liver fluke, Fasciola hepatica. Biochimica et Biophysica Acta 687, 257–64.CrossRefGoogle Scholar
Gentleman, S., Abrahams, S. L. & Mansour, T. E. (1976). Adenosine cyclic 3',5'-monophosphate in the liver fluke, Fasciola hepatica. II. Activation of protein kinase by 5-hydroxytryptamine. Molecular Pharmacology 12, 5968.Google ScholarPubMed
Gianutsos, G. & Bennett, J. L. (1977). The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology 58 C, 157–9.Google ScholarPubMed
Gilles, R. (1970). Intermediary metabolism and energy production in some invertebrates. Archive Internationale de Physiologie et de Biochimie 78, 313–26.CrossRefGoogle ScholarPubMed
Green, N. M. (1963). Avidin I: the use of [14C] biotin for kinetic studies and for assay. Biochemistry Journal 89, 585–91.CrossRefGoogle ScholarPubMed
Hammen, C. S. (1969). Metabolism of the oyster, Crassostrea virginica. American Zoologist 9, 309–18.CrossRefGoogle Scholar
Hardman, E. W., Jones, R. L. H. & Davies, A. H. (1970). Fascioliasis–a large outbreak. British Medical Journal 3, 502–5.CrossRefGoogle ScholarPubMed
Harnisch, O. (1932). Untersuchungen über den Gasmechel von Fasciola hepatica. Zeitschrift für vergleichende Physiologie 17, 365–86.CrossRefGoogle Scholar
Higashi, G. I., Kreiner, P. W., Keirns, J. J. & Bitensky, M. W. (1973). Adenosine 3',5' cyclic monophosphate in Schistosoma mansoni. Life Sciences 13, 1211–20.CrossRefGoogle Scholar
Hines, W. J. W. (1969). An in vitro effect of insulin on glycogen levels in the common liver fluke, Fasciola hepatica (Linnaeus, 1758). Comparative Biochemistry and Physiology 28, 1443–7.CrossRefGoogle Scholar
Hochachka, P. W., Fields, J. & Mustafa, T. (1973). Animal life without oxygen: basic biochemical mechanisms. American Zoologist 13, 543–55.CrossRefGoogle Scholar
Hofmann, E. (1976). The significance of phosphofructokinase to the regulation of carbohydrate metabolism. Reviews of Physiology, Biochemistry and Pharmacology 75, 168.CrossRefGoogle Scholar
Humiczewska, M. (1975 a). Oxidative enzymes in the development of Fasciola hepatica L. II. Dehydrogenase activities of the miracidium. Folia Histochemica et Cytochemica 13, 3750.Google ScholarPubMed
Humiczewska, M. (1975 b). Oxidative enzymes in the development of Fasciola hepatica L. V. Activity of oxidases and dehydrogenases in the cercariae and metacercariae. Folia Histochemica et Cytochemica 13, 213–30.Google Scholar
Humiczewska, M. (1975 c). Oxidative enzymes in the development of Fasciola hepatica L. III. The activities of oxidases and dehydrogenases in the sporocyst. Folia Histochemica et Cytochemica 13, 5160.Google ScholarPubMed
Isseroff, H. & Read, C. P. (1968). Does insulin affect carbohydrate metabolism in Fasciola hepatica? Comparative Biochemistry and Physiology 24, 1069–72.CrossRefGoogle ScholarPubMed
Isseroff, H. & Read, C. P. (1969). Studies on membrane transport. VI. Absorption of amino acids by fascioliid trematodes. Comparative Biochemistry and Physiology 30, 1153–9.CrossRefGoogle ScholarPubMed
Isseroff, H. & Read, C. P. (1974). Studies on membrane transport. VIII. Absorption of monosaccharides by Fasciola hepatica. Comparative Biochemistry and Physiology 47 A, 141–52.CrossRefGoogle Scholar
Isseroff, H., Tunis, M. & Read, C. P. (1972). Changes in amino acids of bile in Fasciola hepatica infections. Comparative Biochemistry and Physiology 41 B, 157–63.Google ScholarPubMed
Isseroff, H. & Walczak, I. M. (1971). Absorption of acetate, pyruvate and certain Kreb's cycle intermediates by Fasciola hepatica. Comparative Biochemistry and Physiology 39 B, 1017–21.Google ScholarPubMed
Jennings, F. W., Mulligan, W. & Urquart, G. M. (1955). Some isotopic studies on the blood loss associated with Fasciola hepatica infections in rabbits. Transactions of the Royal Society for Tropical Medicine and Hygiene 49, 305.Google Scholar
Kane, H. J., Behm, C. A. & Bryant, C. (1980). Metabolic studies on the new fasciolicidal drug closantel. Molecular and Biochemical Parasitology 1, 347–55.CrossRefGoogle ScholarPubMed
Kendall, S. B. & Parfitt, J. W. (1962). The chemotherapy of fascioliasis. British Veterinary Journal 118, 110.CrossRefGoogle Scholar
Köhler, P. & Bachmann, R. (1979). Cited in: The function of mitochondrial enzymes in parasitic helminths. In Trends in Enzymology (ed. Vitale, L. J. and Simeon, V.), FEBS 61, 243–56, Industrial and Clinical Enzymology. Oxford: Pergamon, 1980.Google Scholar
Köhler, P., Bryant, C. & Behm, C. A. (1978). ATP synthesis in a succinate decarboxylase system from Fasciola hepatica mitochondria. International Journal for Parasitology 8, 399404.CrossRefGoogle Scholar
Köhler, P. & Hanselman, K. (1973). Intermediary metabolism in Dicrocoelium dendriticum (Trematoda). Comparative Biochemistry and Physiology 45 B, 825–45.Google ScholarPubMed
Kuo, K. F. & Greengard, P. (1970). Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3′,5′ monophosphate. Journal of Biological Chemistry 245, 2493–8.CrossRefGoogle ScholarPubMed
Kurelec, B. (1964 a). Urea synthesis in the liver fluke (Fasciola hepatica L). I. Krebs-Henseleit ornithine cycle enzymes. Veterinary Archives 34, 193201.Google Scholar
Kurelec, B. (1964 b). Urea synthesis in the liver fluke (Fasciola hepatica L). II. Functional link of the urea cycle with the tricarboxylic acid cycle. Veterinary Archives 34, 221–7.Google Scholar
Kurelec, B. (1975). Molecular biology of helminth parasites. International Journal of Biochemistry 6, 375–86.CrossRefGoogle Scholar
Kurelec, B. & Rijavec, M. (1966). Amino acid pool of the liver fluke (Fasciola hepatica L.). Comparative Biochemistry and Physiology 19, 525–31.CrossRefGoogle ScholarPubMed
Lahoud, H., Prichard, R. K., McManus, W. R., Schofield, P. J. (1971 a). Volatile fatty acid production by adult Fasciola hepatica. Comparative Biochemistry and Physiology 38 B, 379–91.Google Scholar
Lahoud, H., Prichard, R. K., McManus, W. R. & Schofield, P. J. (1971 b). The dissimilation of leucine, isoleucine, and valine to volatile fatty acids by adult Fasciola hepatica. International Journal for Parasitology 1, 223–33.CrossRefGoogle ScholarPubMed
Landsperger, W. J. & Harris, B. G. (1976). NAD+ malic enzyme: regulatory properties of the enzyme from Ascaris suum. Journal of Biological Chemistry 251, 3599–602.CrossRefGoogle ScholarPubMed
Landsperger, W. J., Fodge, D. W. & Harris, B. J. (1978). Genetic and isotope partitioning of the NAD+ malic enzyme from Ascaris suum. Journal of Biological Chemistry 253, 1868–73.Google Scholar
Lee, R. M. & Vasey, H. M. (1970). Pyruvate kinase activity in the liver fluke Fasciola hepatica L. International Journal of Biochemistry 1, 274–80.CrossRefGoogle Scholar
deLey, J. & Vercruysse, R. (1955). Glucose-6-phosphate and gluconate-6-phosphate dehydrogenase in worms. Biochimica et Biophysica Acta 16, 615–16.CrossRefGoogle Scholar
Lloyd, G. M. (1979). PEP metabolism in the liver fluke Fasciola hepatica. Parasitology 79, xlv–xlvi.Google Scholar
Lloyd, G. M. (1983 a). Kinetic properties of phosphofructokinase (and fructose bisphosphatase) of the liver fluke Fasciola hepatica. International Journal for Parasitology 13, 475–81.CrossRefGoogle ScholarPubMed
Lloyd, G. M. (1983 b). A fructose bisphosphate activated lactate dehydrogenase in the liver fluke, Fasciola hepatica. Molecular and Biochemical Parasitology 7, 237246.CrossRefGoogle ScholarPubMed
Lloyd, G. M. & Barrett, J. (1983 a). Fasciola hepatica: carbohydrate metabolism of the adult. Experimental Parasitology 56, 81–8.CrossRefGoogle ScholarPubMed
Lloyd, G. M. & Barrett, J. (1983 b). Fasciola hepatica: inhibition of phosphoenolpyruvate carboxykinase and end product formation by quinolinic acid and 3-mercaptopicolinic acid. Experimental Parasitology 56, 259–65.CrossRefGoogle ScholarPubMed
Mansour, T. E. (1957). The effect of lysergic acid diethylamide, 5-hydroxytryptamine and related compounds on the liver fluke Fasciola hepatica. British Journal of Pharmacology and Chemotherapy 12, 406–9.CrossRefGoogle ScholarPubMed
Mansour, T. E. (1959 a). Studies on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Biochimica et Biophysica Acta, 34, 456–64.CrossRefGoogle ScholarPubMed
Mansour, T. E. (1959 b). The effect of serotonin and related compounds on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Journal of Pharmacological and Experimental Therapeutics 126, 212–16.Google ScholarPubMed
Mansour, T. E. (1962). Effect of serotonin on glycolysis in homogenates from the liver fluke Fasciola hepatica. Journal of Pharmacological and Experimental Therapeutics 135, 94101.Google ScholarPubMed
Mansour, T. E. (1964). The pharmacology and biochemistry of parasitic helminths. Advances in Pharmacology 3, 129–65.CrossRefGoogle ScholarPubMed
Mansour, T. E., Lago, A. D. & Hawkins, J. L. (1957). Occurrence and possible role of serotonin in Fasciola hepatica. Federation Proceedings 16, 319.Google Scholar
Mansour, T. E. & Lago, A. D. (1958). Biochemical effects of serotonin on Fasciola hepatica. Journal of Pharmacological and Experimental Therapeutics 122, 48 A.Google Scholar
Mansour, T. E., Sutherland, E. W., Rall, T. W. & Bueding, E. (1960). The effect of serotonin (5-hydroxytryptamine) on the formation of adenosine 3′,5′ phosphate by tissue particles from the liver fluke Fasciola hepatica. Journal of Biological Chemistry 235, 466–70.CrossRefGoogle Scholar
Mansour, T. E., Le Rouge, N. A. & Mansour, J. M. (1961). Effects of serotonin and of cyclic 3–5 AMP on phosphofructokinase from the liver fluke Fasciola hepatica. Federation Proceedings 20, 226.Google Scholar
Mansour, T. E. & Mansour, J. M. (1962). Effects of serotonin (5-hydroxytryptamine) and adenosine 3′,5′ phosphate on phosphofructokinase from the liver fluke Fasciola hepatica. Journal of Biological Chemistry 237, 629–34.CrossRefGoogle Scholar
Mansour, T. E. & Stone, D. B. (1970). Biochemical effects of lysergic acid diethylamide on the liver fluke Fasciola hepatica. Biochemical Pharmacology 19, 1137–46.CrossRefGoogle Scholar
Mansour, T. E. & Mansour, J. M. (1977). Phosphodiesterase in the liver fluke Fasciola hepatica. Biochemical Pharmacology 26, 2325–30.CrossRefGoogle ScholarPubMed
Mansour, T. E. & Mansour, J. M. (1979). Effect of some phosphodiesterase inhibitors on adenylate cyclase from the liver fluke Fasciola hepatica. Biochemical Pharmacology 28, 1943–6.CrossRefGoogle ScholarPubMed
Mansour, T. E., Morris, P. G., Feeney, J. & Roberts, G. C. K. (1982). A31P-NMR study of the intact liver fluke Fasciola hepatica. Biochimica et Biophysica Acta 721, 336–40.CrossRefGoogle ScholarPubMed
Mansour, J. M., Ehrlich, A. & Mansour, T. E. (1983). The dual effects of aluminium as activator and inhibitor of adenylate cyclase in the liver fluke Fasciola hepatica. Biochemical and Biophysical Research Communications 116, 911–18.CrossRefGoogle Scholar
Moczon, T. (1983). Oxidoreductases and phosphatases in miracidia of Fasciola hepatica as revealed by histochemical methods. Acta Parasitologica Polonica 28, 267–72.Google Scholar
Monod, J., Changeux, J–P. & Jacob, F. (1963). Allosteric proteins and cellular control processes. Journal of Molecular Biology 6, 306–29.CrossRefGoogle Scholar
Moore, M. N. & Halton, D. W. (1975). A histochemical study of the redia and cercariae of Fasciola hepatica. Zeitschrift für Parasitenkunde 47, 4554.CrossRefGoogle ScholarPubMed
Moss, G. D. (1970). The excretory metabolism of the endoparasitic digenean Fasciola hepatica and its relationship to its respiratory metabolism. Parasitology 60, 19.CrossRefGoogle ScholarPubMed
Newsholme, E. A. & Crabtree, B. (1970). The role of fructose-1,6-diphosphatase in the regulation of glycolysis in skeletal muscle. FEBS Letters 7, 195.CrossRefGoogle ScholarPubMed
Newsholme, E. A. & Crabtree, B. (1973). Metabolic aspects of enzyme activity regulation. Symposium of the Society for Experimental Biology 27, 429–60.Google ScholarPubMed
Newsholme, E. A. & Start, C. (1976). Regulation in Metabolism. London and New York: Wiley.Google ScholarPubMed
Northup, J. K. & Mansour, T. E. (1978 a). Adenylate cyclase from Fasciola hepatica: 2. Role of guanine nucleotides in coupling adenylate cyclase and serotonin receptors. Molecular Pharmacology 14, 820–33.Google ScholarPubMed
Northup, J. K. & Mansour, T. E. (1978 b). Adenylate cyclase from Fasciola hepatica. 1. Ligand specificity of adenylate cyclase-coupled serotonin receptors. Molecular Pharmacology 14, 804–19.Google ScholarPubMed
Northup, J. K., Renart, M. F., Grove, J. R. & Mansour, T. E. (1979). Serotonin-activated adenylate cyclase from Fasciola hepatica. Journal of Biological Chemistry 254, 11861–7.CrossRefGoogle ScholarPubMed
Oldenborg, V., Van Vugt, F. & Van Golde, L. M. G. (1975). Composition and metabolism of phospholipids of Fasciola hepatica, the common liver fluke. Biochimica et Biophysica Acta 398, 101–10.CrossRefGoogle ScholarPubMed
Oldenborg, V., Van Vugt, F., Van Golde, L. M. G. & Van den Bergh, S. G. (1976). Synthesis of fatty acids and phospholipids in Fasciola hepatica. In Biochemistry of Parasites and Host–Parasite Relationships (ed. H., Van den Bossche), pp. 159–66. Amsterdam, New York, Oxford: North–Holland.Google Scholar
Pantelouris, E. M. (1964). Localisation of glycogen in Fasciola hepatica and an effect of insulin. Journal of Helminthology 38, 283–6.CrossRefGoogle Scholar
Pantelouris, E. M. (1965). Effect of host hormones on the internal parasite, Fasciola hepatica. Research in Veterinary Science 6, 330–3.CrossRefGoogle ScholarPubMed
Pearson, I. G. (1963). Use of chromium radioisotope 51Cr to estimate blood loss through ingestion by Fasciola hepatica. Experimental Parasitology 13, 186–93.CrossRefGoogle ScholarPubMed
Pietrzak, S. M. & Saz, H. J. (1981). Succinate decarboxylation to propionate and the associated phosphorylation in Fasciola hepatica and Spirometra mansonoides. Molecular and Biochemical Parasitology 3, 6170.CrossRefGoogle ScholarPubMed
Prichard, R. K. (1974). Intermediary metabolism in 6-week-old, liver stage, Fasciola hepatica. In Proceedings of the Third International Congress of Parasitology, München 3, 2531.Google Scholar
Prichard, R. K. (1976). Regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in adult Fasciola hepatica (Trematoda). International Journal for Parasitology 6, 227–33.CrossRefGoogle ScholarPubMed
Prichard, R. K. (1978). The metabolic profile of adult Fasciola hepatica obtained from rafoxanide treated sheep. Parasitology 76, 277–88.CrossRefGoogle ScholarPubMed
Prichard, R. K. (1980). The role and inhibition of phosphoenolpyruvate carboxykinase in Fasciola hepatica (Trematoda). In Trends in Enzymology (ed. Vitale, L. J. and Simeon, V.), FEBS 61, 315324, Industrial and Clinical Enzymology. Oxford: Pergamon, 1980.Google Scholar
Prichard, R. K. & Schofield, P. J. (1968 a). A comparative study of the tricarboxylic acid cycle enzymes in Fasciola hepatica and rat liver. Comparative Biochemistry and Physiology 25, 1005–19.CrossRefGoogle ScholarPubMed
Prichard, R. K. & Schofield, P. J. (1968 b). The glycolytic pathway in adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 697710.CrossRefGoogle ScholarPubMed
Prichard, R. K. & Schofield, P. J. (1968 c). Phosphoenolpyruvate carboxykinase in the adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 773–85.CrossRefGoogle ScholarPubMed
Prichard, R. K. & Schofield, P. J. (1969). The glyoxylate cycle, fructose-1,6-diphosphatase and glyconeogenesis in Fasciola hepatica. Comparative Biochemistry and Physiology 29, 581–90.CrossRefGoogle Scholar
Rall, T. W. & Sutherland, E. W. (1958). Formation of a cyclic adenine ribonucleotide by tissue particles. Journal of Biological Chemistry 232, 1065–76.CrossRefGoogle ScholarPubMed
Ramaiah, A. (1974). Pasteur effect and phosphofructokinase. In Current Topics in Cellular Regulation 8, 298345, (ed. B. L. Horecker and E. R. Stadtman) New York and London: Academic Press.Google Scholar
Ramaiah, A. (1976). Regulation of glycolysis in skeletal muscle. Life Sciences 19, 455–66.CrossRefGoogle ScholarPubMed
Renart, M. F., Ayanoglu, G., Mansour, J. M. & Mansour, T. E. (1979). Fluoride and guanosine nucleotide activated adenylate cyclase from Fasciola hepatica: Reconstitution after inactivation. Biochemical and Biophysical Research Communications 89, 1146–53.CrossRefGoogle ScholarPubMed
Rohrbacher, G. H. (1957). Observations on the survival in vitro of bacteria free adult common liver fluke, Fasciola hepatica Linn, 1758. Journal of Parasitology 43, 918.CrossRefGoogle Scholar
Saz, H. J. & Lescure, O. L. (1967). Glyconeogenesis, fructose-1,6-diphosphatase and phosphoenolpyruvate carboxykinase activities of Ascaris lumbricoides adult muscle and larvae. Comparative Biochemistry and Physiology 2, 1528.CrossRefGoogle Scholar
Saz, H. J. & Pietrzak, S. M. (1980). Phosphorylation associated with succinate decarboxylation to propionate in Ascaris mitochondria. Archives of Biochemistry and Biophysics 202, 388395.CrossRefGoogle ScholarPubMed
Senutaite, Y. (1969). On the pentose phosphate pathway in Fasciola hepatica. Acta Parasitologica Lithuanica 9, 83–7.Google Scholar
Shishov, B. A., Zhuchkova, N. J. & Terenia, N. B. (1974). Study of monoaminergic nerve cells in some nematodes and in trematoda, Fasciola hepatica. In Proceedings of the Third International Congress of Parasitology, München 3, 15031504.Google Scholar
Simonic, T. & Locatelli, A. (1978). Effect of 3′,5′ cyclic GMP on Fasciola hepatica phosphorylase. Archivo veterinario Italiano 29, 101–3.Google Scholar
Simonic, T., Sartorelli, P. & Locatelli, A. (1983). Fasciola hepatica: increase of glycogen phosphorylase activity due to prostaglandins. Experimental Parasitology 56, 8992.CrossRefGoogle ScholarPubMed
Stevenson, W. (1947). Physiological and histochemical observations on the adult liver fluke, Fasciola hepatica L. IV. The excretory system. Parasitology 38, 140–4.CrossRefGoogle Scholar
Stone, D. B. & Mansour, T. E. (1966). Factors influencing activation of liver fluke phosphofructokinase (PFK). Federation Proceedings of the Federation of the American Society for Experimental Biology 25, 219.Google Scholar
Stone, D. B. & Mansour, T. E. (1967 a). Phosphofructokinase from the liver fluke. I. activation by adenosine 3′,5′ phosphate and by serotonin. Molecular Pharmacology 3, 161–76.Google Scholar
Stone, D. B. & Mansour, T. E. (1967 b). Phosphofructokinase from the liver fluke. II. Kinetic properties of the enzyme. Molecular Pharmacology 3, 177–87.Google ScholarPubMed
Sturm, G., Hirschauser, C. & Zilliken, F. (1969). Vergleichende Bestimmung von Enzymaktivaten in Fasciola hepatica und Rinderleber. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 350, 696700.CrossRefGoogle Scholar
Sturm, G., Hirschauser, C. & Zilliken, F. (1972). Vergleichende Bestimmung von Enzymaktivaten in Dicrocoelium dendriticum, Wirtsleber (Rind) und Fasciola hepatica. Zeitschrift für Parasitenkunde 38, 45–7.CrossRefGoogle ScholarPubMed
Tashima, Y., Mizunuma, H. & Hasegawa, M. (1979). Purification and properties of mouse liver fructose–1,6-bisphosphatase. Journal of Biochemistry 86, 1089–101.CrossRefGoogle ScholarPubMed
Thorpe, E. (1968). Comparative enzyme histochemistry of immature and mature stages of Fasciola hepatica. Experimental Parasitology 22, 150–9.CrossRefGoogle ScholarPubMed
Thorsell, W. (1963). Some acids belonging to the citric acid cycle in the liver fluke Fasciola hepatica. Acta Chemica Scandinavica 17, 2129–31.CrossRefGoogle Scholar
Thorsell, W., Applegren, L-E. & Kippar, M. (1968). Distribution and fate of 2–14C glucose in the liver fluke Fasciola hepatica L after short in vitro incubation. Zeitschrift für Parasitenkunde 31, 113–21.CrossRefGoogle Scholar
Threadgold, L. T. & Hanna, B. (1975). Development of an in vitro technique for cytological investigations of slices of Fasciola hepatica: evaluation of physiological criteria. International Journal for Parasitology 5, 333–7.CrossRefGoogle Scholar
Tielens, A. G. M. (1982). The energy metabolism of the juvenile liver fluke, Fasciola hepatica during its development in the vertebrate host. Ph.D. thesis, University of Utrecht.Google Scholar
Tielens, A. G. M., Van der Meer, P. & Van den Bergh, S. G. (1981 a). Fasciola hepatica: simple large scale in vitro excystment of metacercariae and subsequent isolation of juvenile liver fluke. Experimental Parasitology 51, 813.CrossRefGoogle Scholar
Tielens, A. G. M., Van der Meer, P. & Van den Bergh, S. G. (1981 b). The aerobic energy metabolism of juvenile Fasciola hepatica. Molecular and Biochemical Parasitology 3, 205–14.CrossRefGoogle ScholarPubMed
Tielens, A. G. M., Van den Heuvel, J. M. & Van den Bergh, S. G. (1982). Changes in energy metabolism of the juvenile Fasciola hepatica during its development in the liver parenchyma. Molecular and Biochemical Parasitology 6, 277–86.CrossRefGoogle ScholarPubMed
Tielens, A. G. M., Van den Heuvel, J. M. & Van den Bergh, S. G. (1984). The energy metabolism of Fasciola hepatica during its development in the final host. Molecular and Biochemical Parasitology 13, 301–7.CrossRefGoogle ScholarPubMed
Todd, J. R. & Ross, J. G. (1966). Origin of haemoglobin in the caecal contents of Fasciola hepatica. Experimental Parasitology 19, 151–4.CrossRefGoogle ScholarPubMed
Umezurike, G. M. & Anya, A. O. (1980). Carbohydrate energy metabolism in Fasciola gigantica (Trematoda). International Journal for Parasitology 10, 175–80.CrossRefGoogle ScholarPubMed
Utter, M. F. (1961). Phosphoenolpyruvate carboxykinase (PEPCK). In The Enzymes, 2nd vol. 5 (ed. Boyer, P., Lardy, H. and Myrbach, K.), p. 319. New York: Academic Press.Google Scholar
Van den Bergh, S. G., Van Vugt, F. & Tielens, A. G. M. (1980). Anaerobic and aerobic energy metabolism of the common liver fluke, Fasciola hepatica. In Trends in Enzymology (ed. Vitale, L. J. and Simeon, V.), FEBS 61, 231–42, Industrial and clinical Enzymology. Oxford: Pergamon, 1980.Google Scholar
Van Vugt, F. (1979/1980). The energy metabolism of the adult common liver fluke Fasciola hepatica. Veterinary Science Communications 3, 299316.CrossRefGoogle Scholar
Van Vugt, F., Kalaycioglu, L. & Van den Bergh, S. G. (1976). ATP production in Fasciola hepatica mitochondria. In Biochemistry of Parasites and Host–Parasite Relationships (ed. H., van den Bossche), pp.151–8. Amsterdam, New York, Oxford: North–Holland.Google Scholar
Van Vugt, F., Van der Meer, P. & Van den Bergh, S. G. (1979). The formation of propionate and acetate as terminal processes in the energy metabolism of the adult liver fluke Fasciola hepatica. International Journal of Biochemistry 10, 1118.CrossRefGoogle ScholarPubMed
Von Brand, T. & Mercado, T. I. (1961). Histochemical glycogen studies on Fasciola hepatica. Journal of Parasitology 47, 459–61.CrossRefGoogle ScholarPubMed
Von Grembergen, G. (1949). Le métabolisme respiratoire du trématode Fasciola hepatica Linn. Enzymologia 13, 241–57.Google Scholar
Ward, P. F. V. (1974). The metabolism of glucose by Haemonchus contortus in vitro. Parasitology 69, 175–90.CrossRefGoogle Scholar
Williams, J. P. G. & Bryant, C. (1963). Intermediary metabolism in the immature liver fluke Fasciola hepatica. Nature, London 200, 489.CrossRefGoogle ScholarPubMed
Wilson, R. A. (1967). A physiological study of the development of the eggs of Fasciola hepatica L. the common liver fluke. Comparative Biochemistry and Physiology 21, 307–20.CrossRefGoogle Scholar
Wright, R. W. & Isseroff, H. (1973). Further studies on the absorption of acetate by Fasciola hepatica. Comparative Biochemistry and Physiology 45 B, 95–9.Google ScholarPubMed
de Zoeten, L. W., Posthuma, D. & Tipker, J. (1969). Intermediary metabolism of the liver fluke, Fasciola hepatica. I. Biosynthesis of propionic acid. Hoppe–Seyler's Zeitschrift für physiologische Chemie 350, 683–9.CrossRefGoogle ScholarPubMed
de Zoeten, L. W. & Tipker, J. (1969). Intermediary metabolism of the liver fluke Fasciola hepatica. II. Hydrogen transport and phosphorylation. Hoppe–Seyler's Zeitschrift für physiologische Chemie 350, 691–5.CrossRefGoogle ScholarPubMed