Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T19:24:41.647Z Has data issue: false hasContentIssue false

Efficacy of the cyclooctadepsipeptide PF1022A against Heligmosomoides bakeri in vitro and in vivo

Published online by Cambridge University Press:  15 July 2011

UZOMA NWOSU
Affiliation:
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland University of Basel, P.O. Box, CH-4003 Basel, Switzerland
MIREILLE VARGAS
Affiliation:
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland University of Basel, P.O. Box, CH-4003 Basel, Switzerland
ACHIM HARDER
Affiliation:
Bayer Animal Health GmbH, Building 6700, 51368 Leverkusen, Germany
JENNIFER KEISER*
Affiliation:
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland University of Basel, P.O. Box, CH-4003 Basel, Switzerland
*
*Corresponding author: Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland. Tel: +41 61 284 8218. Fax: +41 61 284 8105. E-mail: [email protected]

Summary

The cyclooctadepsipeptide PF1022A derived from the fungus, Mycelia sterilia, is characterized by a broad spectrum of activity against different parasitic gastrointestinal nematodes of livestock. In the present work the anthelmintic activity of PF1022A against Heligmosomoides bakeri, a widely used laboratory model was studied. Albendazole, ivermectin and levamisole served as reference. In vitro, PF1022A showed low activity on embryonation but significantly inhibited egg hatch (10 and 100 μg/ml), whereas albendazole (10 and 100 μg/ml) revealed statistically significant inhibitions of both embryonation and egg hatch. PF1022A (1–100 μg/ml) completely inhibited larval movement at most examination points. Comparable significant anthelmintic activity on the larval stages of H. bakeri was observed with levamisole (48–100%), while slightly lower activities were observed with ivermectin (20–92%) and albendazole (0–87%) at 1–100 μg/ml. PF1022A and levamisole significantly inhibited motility and egg release of adult worms, while albendazole and ivermectin failed to demonstrate activity. Significant worm burden reductions were achieved with PF1022A, levamisole and ivermectin in vivo. For example, at 0·125 mg/kg PF1022A a worm burden reduction of 91·8% was observed. The use of drug combinations did not further enhance the in vitro and in vivo activity of PF1022A. In conclusion, further investigations are warranted with PF1022A, as the drug is characterized by significant larvicidal and nematocidal activity in vitro and in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bethony, J., Brooker, S., Albonico, M., Geiger, S. M., Loukas, A., Diemert, D. and Hotez, P. J. (2006). Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 15211532.CrossRefGoogle ScholarPubMed
Brooker, S. (2010). Estimating the global distribution and disease burden of intestinal nematode infections: adding up the numbers – a review. International Journal for Parasitology 40, 11371144.CrossRefGoogle ScholarPubMed
Burren, C. H. (1980). A method for obtaining large numbers of clean infective larvae of Nematospiroides dubius. Zeitschrift für Parasitenkunde 62, 111112.CrossRefGoogle ScholarPubMed
Chan, M. S. (1997). The global burden of intestinal nematode infections – fifty years on. Parasitology Today 13, 438443.CrossRefGoogle Scholar
Chimwani, D. M. and Britt, D. P. (1986). The efficacy of levamisole administered orally or parenterally against Heligmosomoides polygyrus in mice. Journal of Helminthology 60, 99104.CrossRefGoogle ScholarPubMed
Chou, T. C. (1998). Drug combinations: from laboratory to practice. Journal of Laboratory and Clinical Medicine 132, 68.CrossRefGoogle ScholarPubMed
Coles, G. C. (1999). Anthelmintic resistance and the control of worms. Journal of Medical Microbiology 48, 323325.CrossRefGoogle ScholarPubMed
Coles, G. C. and Klei, T. R. (1995). Animal parasites, politics and agricultural research. Parasitology Today 11, 276278.CrossRefGoogle ScholarPubMed
Conder, G. A., Johnson, S. S., Nowakowski, D. S., Blake, T. E., Dutton, F. E., Nelson, S. J., Thomas, E. M., Davis, J. P. and Thompson, D. P. (1995). Anthelmintic profile of the cyclodepsipeptide PF1022A in in vitro and in vivo models. Journal of Antibiotics (Tokyo) 48, 820823.CrossRefGoogle ScholarPubMed
Fonseca-Salamanca, F., Martinez-Grueiro, M. M. and Martinez-Fernandez, A. R. (2003). Nematocidal activity of nitazoxanide in laboratory models. Parasitology Research 91, 321324.CrossRefGoogle ScholarPubMed
Fukashe, T., Koike, T., Chinone, S., Akihama, S., Iagake, H., Takagi, M., Shimizu, T., Yaguchi, T., Sasaki, T. and Okada, T. (1990). Anthelmintic effects of PF1022, a new cyclic depsipeptide, on the intestinal parasitic nematodes in dogs and cats. Proceedings of the 110th Meeting of the Japanese Society Veterinary Science, p. 122, Abstract.Google Scholar
Geerts, S., Brandt, J., Borgsteede, F. H. and Van Loon, H. (1989). Reliability and reproducibility of the larval paralysis test as an in vitro method for the detection of anthelmintic resistance of nematodes against levamisole and morantel tartrate. Veterinary Parasitology 30, 223232.CrossRefGoogle Scholar
Guest, M., Bull, K., Walker, R. J., Amliwala, K., O'Connor, V., Harder, A., Holden-Dye, L. and Hopper, N. A. (2007). The calcium-activated potassium channel, SLO-1, is required for the action of the novel cyclo-octadepsipeptide anthelmintic, emodepside, in Caenorhabditis elegans. International Journal for Parasitology 37, 15771588.CrossRefGoogle ScholarPubMed
Harder, A., Holden-Dye, L., Walker, R. and Wunderlich, F. (2005). Mechanisms of action of emodepside. Parasitology Research 97 (Suppl 1), S1S10.CrossRefGoogle ScholarPubMed
Harder, A., Londershausen, M. and Mehlhorn, H. (1997). The four larval stages and the adults of Heterakis spumosa are impaired by the anthelminthic cyclodepsipeptide PF1022A. Zentralblatt für Bakteriologie 286, 212.Google Scholar
Harder, A. and von Samson-Himmelstjerna, G. (2001). Activity of the cyclic depsipeptide emodepside (BAY 44-4400) against larval and adult stages of nematodes in rodents and the influence on worm survival. Parasitology Research 87, 924928.CrossRefGoogle ScholarPubMed
Harder, A. and von Samson-Himmelstjerna, G. (2002). Cyclooctadepsipeptides – a new class of anthelmintically active compounds. Parasitology Research 88, 481488.CrossRefGoogle ScholarPubMed
Hotez, P. J., Molyneux, D. H., Fenwick, A., Kumaresan, J., Sachs, S. E., Sachs, J. D. and Savioli, L. (2007). Control of neglected tropical diseases. New England Journal of Medicine 357, 10181027.CrossRefGoogle ScholarPubMed
Keiser, J. (2010). In vitro and in vivo trematode models for chemotherapeutic studies. Parasitology 137, 589603.CrossRefGoogle ScholarPubMed
Keiser, J. and Utzinger, J. (2010). The drugs we have and the drugs we need against major helminth infections. Advances in Parasitology 73, 197230.CrossRefGoogle ScholarPubMed
Keiser, J. and Utzinger, J. (2008). Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. Journal of the American Medical Association 299, 19371948.Google ScholarPubMed
Kopp, S. R., Coleman, G. T., McCarthy, J. S. and Kotze, A. C. (2008). Application of in vitro anthelmintic sensitivity assays to canine parasitology: detecting resistance to pyrantel in Ancylostoma caninum. Veterinary Parasitology 152, 284293.CrossRefGoogle ScholarPubMed
Mehlhorn, H., Schmahl, G., Frese, M., Mevissen, I., Harder, A. and Krieger, K. (2005). Effects of a combination of emodepside and praziquantel on parasites of reptiles and rodents. Parasitology Research 97 (Suppl. 1), S65S69.CrossRefGoogle ScholarPubMed
Nicolay, F., Harder, A., von Samson-Himmelstjerna, G. and Mehlhorn, H. (2000). Synergistic action of a cyclic depsipeptide and piperazine on nematodes. Parasitology Research 86, 982992.CrossRefGoogle ScholarPubMed
Njoroge, J. M., Scott, M. E. and Jalili, F. (1997). The efficacy of ivermectin against laboratory strains of Heligmosomoides polygyrus (Nematoda). International Journal for Parasitology 27, 439442.CrossRefGoogle ScholarPubMed
Sasaki, T., Takagi, M., Yaguchi, T., Miyadoh, S., Okada, T. and Koyama, M. (1992). A new anthelmintic cyclodepsipeptide, PF1022A. Journal of Antibiotics (Tokyo) 45, 692697.CrossRefGoogle ScholarPubMed
Satou, T., Koga, M., Koike, K., Tada, I. and Nikaido, T. (2001). Nematocidal activities of thiabendazole and ivermectin against the larvae of Strongyloides ratti and S. venezuelensis. Veterinary Parasitology 99, 311322.CrossRefGoogle ScholarPubMed
Schroeder, I., Altreuther, G., Schimmel, A., Deplazes, P., Kok, D. J., Schnyder, M. and Krieger, K. J. (2009). Efficacy of emodepside plus praziquantel tablets (Profender tablets for dogs) against mature and immature cestode infections in dogs. Parasitology Research 105 (Suppl. 1), S31S38.CrossRefGoogle ScholarPubMed
Terada, M. (1992). Neuropharmacological mechanism of PF1022A, an antinematode anthelminthic with a new structure of cyclic depsipeptide, on Angiostrongylus cantonensis and isolated frog rectus. Japanese Journal of Parasitology 41, 108117.Google Scholar
von Samson-Himmelstjerna, G., Coles, G. C., Jackson, F., Bauer, C., Borgsteede, F., Cirak, V. Y., Demeler, J., Donnan, A., Dorny, P., Epe, C., Harder, A., Hoglund, J., Kaminsky, R., Kerboeuf, D., Kuttler, U., Papadopoulos, E., Posedi, J., Small, J., Varady, M., Vercruysse, J. and Wirtherle, N. (2009). Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes. Parasitology Research 105, 825834.CrossRefGoogle ScholarPubMed
Wahid, F. N., Behnke, J. M. and Conway, D. J. (1989). Factors affecting the efficacy of ivermectin against Heligmosomoides polygyrus (Nematospiroides dubius) in mice. Veterinary Parasitology 32, 325340.CrossRefGoogle ScholarPubMed