Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T17:56:18.108Z Has data issue: false hasContentIssue false

Effects of water flow on the infection dynamics of Myxobolus cerebralis

Published online by Cambridge University Press:  06 December 2007

S. L. HALLETT*
Affiliation:
Oregon State University, Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Corvallis 97331 Oregon, USA
J. L. BARTHOLOMEW
Affiliation:
Oregon State University, Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Corvallis 97331 Oregon, USA
*
*Corresponding author. Tel.: +1 541 737 1856. Fax: +1 541 737 0496. E-mail: [email protected]

Summary

Myxobolus cerebralis, the myxozoan parasite responsible for whirling disease in salmonid fishes, has a complex life-cycle involving an invertebrate host and 2 spore stages. Water flow rate is an environmental variable thought to affect the establishment and propagation of M. cerebralis; however, experimental data that separates flow effects from those of other variables are scarce. To compare how this parameter affected parasite infection dynamics and the invertebrate and vertebrate hosts, dead, infected fish were introduced into a naïve habitat with susceptible hosts under 2 experimental flow regimes: slow (0·02 cm/s) and fast (2·0 cm/s). Throughout the 1-year study, uninfected fry were held in both systems, the outflows were screened weekly for spores and the annelid populations were monitored. We found clear differences in prevalence of infection in the worms, prevalence and severity of infection in the fish, and host survival. Both flows provided environments in which M. cerebralis could complete its life-cycle; however, both the parasite and its invertebrate host proliferated to a greater extent in the slow flow environment over the 1-year study period. This finding is of significance for aquatic systems where the flow rate can be manipulated, and should be incorporated into risk analysis assessments.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AFS-FHS (2005). Suggested Procedures for the Detection and Identification of Certain Finfish and Shellfish Pathogens. Blue Book. 5th Edn. Vol. 2, Fish Health Section, American Fisheries Society, Bethesda, Maryland.Google Scholar
Allan, J. D. (2001). Stream Ecology. Structure and Function of Running Waters. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Arndt, R. E., Wagner, E. J., Cannon, Q. and Smith, M. (2002). Triactinomyxon production as related to rearing substrate and diel light cycle. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 8791. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.Google Scholar
Arsan, E. L., Hallett, S. L. and Bartholomew, J. L. (2007). Tubifex tubifex from Alaska and their susceptibility to Myxobolus cerebralis. Journal of Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Baldwin, T. J., Vincent, E. R., Silflow, R. M. and Stanek, D. R. (2000). Myxobolus cerebralis infection in rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) exposed under natural stream conditions. Journal of Veterinary Diagnostic Investigation 12, 312321.CrossRefGoogle Scholar
Bartholomew, J. L., Kerans, B. L., Hedrick, R. P., MacDiarmid, S. and Winton, J. R. (2005). A risk assessment based approach for the management of whirling disease. Reviews in Fisheries Science 13, 205230.CrossRefGoogle Scholar
Bartholomew, J. L. and Reno, P. W. (2002). Review: The history and dissemination of whirling disease. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 324. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.CrossRefGoogle Scholar
Beauchamp, K. A., Gay, M., Kelley, G. O., El-Matbouli, M., Kathman, R. D., Nehring, R. B. and Hedrick, R. P. (2002). Prevalence and susceptibility of infection to Myxobolus cerebralis, and genetic differences among populations of Tubifex tubifex. Diseases of Aquatic Organisms 51, 113121.CrossRefGoogle ScholarPubMed
Blazer, V. S., Waldrop, T. B., Schill, W. B., Densmore, C. L. and Smith, D. (2003). Effects of water temperature and substrate type on spore production and release in eastern Tubifex tubifex worms infected with Myxobolus cerebralis. Journal of Parasitology 89, 2126.CrossRefGoogle ScholarPubMed
de la Hoz Franco, E. and Budy, P. (2004). Linking environmental heterogeneity to the distribution and prevalence of Myxobolus cerebralis: a comparison across sites in a northern Utah watershed. Transactions of the American Fisheries Society 133, 11761189.CrossRefGoogle Scholar
El-Matbouli, M. and Hoffmann, R. W. (1998). Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. International Journal for Parasitology 28, 195217.CrossRefGoogle Scholar
El-Matbouli, M., McDowell, T. S., Antonio, D. B., Andree, K. B. and Hedrick, R. P. (1999). Effect of water temperature on the development, release and survival of the triactinomyxon stage of Myxobolus cerebralis in its oligochaete host. International Journal for Parasitology 29, 627641.CrossRefGoogle ScholarPubMed
Gilbert, M. and Granath, W. O. Jr. (2001). Persistent infection of Myxobolus cerebralis, the causative agent of salmonid whirling disease, in Tubifex tubifex. Journal of Parasitology 87, 101107.CrossRefGoogle ScholarPubMed
Halliday, M. M. (1973). Studies on Myxosoma cerebralis, a parasite of salmonids. II. The development and pathology of Myxosoma cerebralis, in experimentally infected rainbow trout (Salmo gairdneri) fry reared at different water temperatures. Nordisk Veterinaermedicin 25, 349358.Google ScholarPubMed
Halliday, M. M. (1976). The biology of Myxosoma cerebralis: the causative organism of whirling disease. Journal of Fish Biology 9, 339357.CrossRefGoogle Scholar
Hiner, M. and Moffitt, C. M. (2002). Modeling Myxobolus cerebralis infections in trout: associations with habitat variables. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 167180. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.Google Scholar
Kelley, G. O., Zagmutt-Vergara, F. J., Leutenegger, C. M., Myklebust, K. A., Adkison, M. A., McDowell, T. S., Marty, G. D., Kahler, A. L., Bush, A. L., Gardner, I. A. and Hedrick, R. P. (2004). Evaluation of five diagnostic methods for the detection and quantification of Myxobolus cerebralis. Journal of Veterinary Diagnostic Investigation 16, 195204.CrossRefGoogle ScholarPubMed
Kerans, B. L., Stevens, R. I. and Lemon, J. C. (2005). Water temperature affects a host-parasite interaction: Tubifex tubifex and Myxobolus cerebralis. Journal of Aquatic Animal Health 17, 216221.CrossRefGoogle Scholar
Kerans, B. L. and Zale, A. V. (2002). The ecology of Myxobolus cerebralis. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 145166. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.Google Scholar
Krueger, R. C., Kerans, B. L., Vincent, E. R. and Rasmussen, C. (2006). Risk of Myxobolus cerebralis infection to rainbow trout in the Madison River, Montana, USA. Ecological Applications 16, 770783.CrossRefGoogle ScholarPubMed
Lazim, M. N. and Learner, M. A. (1987). The influence of sediment composition and leaf litter on the distribution of tubificid worms (Oligochaeta). A field and laboratory study. Oecologia 72, 131136.CrossRefGoogle ScholarPubMed
Lorz, H. V., Amandi, A., Banner, C. R. and Rohovec, J. S. (1989). Detection of Myxobolus (Myxosoma) cerebralis in salmonid fishes in Oregon. Journal of Aquatic Animal Health 1, 217221.2.3.CO;2>CrossRefGoogle Scholar
MacConnell, E. and Vincent, E. R. (2002). The effects of Myxobolus cerebralis on the salmonid host. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 95107. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.Google Scholar
Marcogliese, D. J. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology 79, 13311352.CrossRefGoogle Scholar
Markiw, M. E. (1992). Experimentally induced whirling disease I. Dose response of fry and adults to the triactinomyxon stage of Myxobolus cerebralis. Journal of Aquatic Animal Health 4, 4447.2.3.CO;2>CrossRefGoogle Scholar
McMurtry, M. J., Rapport, D. J. and Chua, K. E. (1983). Substrate selection by tubificid oligochaetes. Canadian Journal of Fisheries and Aquatic Sciences 40, 16391646.CrossRefGoogle Scholar
Quinn, T. P. (2005). The Behavior and Ecology of Pacific Salmon and Trout. American Fisheries Society, Bethesda, Maryland and University of Washington Press Seattle, USA.Google Scholar
Raleigh, R. F., Zuckerman, L. D. and Nelson, P. C. (1986). Habitat suitability index models and instream flow suitability curves: Brown trout, revised. U.S. Fish Wildlife Service Biological Report 82 (10.124).Google Scholar
Rodriguez, P., Martinez-Madrid, M., Arrate, J. A. and Navarro, E. (2004). Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463, 133140.CrossRefGoogle Scholar
Sandell, T. A., Lorz, H. V., Stevens, D. G. and Bartholomew, J. L. (2001). Dynamics of Myxobolus cerebralis in the Lostine River, Oregon: implications for resident and anadromous salmonids. Journal of Aquatic Animal Health 13, 142150.2.0.CO;2>CrossRefGoogle Scholar
Schisler, G. J., Bergersen, E. P. and Walker, P. G. (2000). Effects of multiple stressors on morbidity and mortality of fingerling rainbow trout infected with Myxobolus cerebralis. Transactions of the American Fisheries Society 129, 859865.2.3.CO;2>CrossRefGoogle Scholar
Sollid, S. A., Lorz, H. V., Stevens, D. G. and Bartholomew, J. L. (2002). Relative susceptibility of selected Deschutes River, Oregon, salmonid species to experimentally induced infection by Myxobolus cerebralis. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 117124. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.Google Scholar
Stevens, R., Kerans, B. L., Lemmon, J. C. and Rasmussen, C. (2001). The effects of Myxobolus cerebralis dose on triactinomyxon production and biology of Tubifex tubifex from two geographic regions. Journal of Parasitology 87, 315321.CrossRefGoogle ScholarPubMed
Thompson, K. G. and Nehring, R. B. (2000). A simple technique used to filter and quantify the actinospore of Myxobolus cerebralis and determine its seasonal abundance in the Colorado River. Journal of Aquatic Animal Health 12, 316323.2.0.CO;2>CrossRefGoogle Scholar
Wagner, E. J. (2002). Whirling disease prevention, control, and management: a review. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Wilson, J. C.), pp. 217225. American Fisheries Society Symposium 29, Bethesda, Maryland, USA.Google Scholar
Wolf, K. and Markiw, M. E. (1984). Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225, 14491452.CrossRefGoogle ScholarPubMed
Zendt, J. S. and Bergersen, E. P. (2000). Distribution and abundance of the aquatic oligochaete host Tubifex tubifex for the salmonid whirling disease parasite Myxobolus cerebralis in the Upper Colorado River Basin. North American Journal of Fisheries Management 20, 502512.2.3.CO;2>CrossRefGoogle Scholar