Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T14:49:09.759Z Has data issue: false hasContentIssue false

The effects of social structure and sex-biased transmission on macroparasite infection

Published online by Cambridge University Press:  25 September 2008

S. E. PERKINS*
Affiliation:
Center for Infectious Disease Dynamics, 208 Mueller Laboratory, Penn State University, State College, PA 16803, USA
M. F. FERRARI
Affiliation:
Center for Infectious Disease Dynamics, 208 Mueller Laboratory, Penn State University, State College, PA 16803, USA
P. J. HUDSON
Affiliation:
Center for Infectious Disease Dynamics, 208 Mueller Laboratory, Penn State University, State College, PA 16803, USA
*
*Corresponding Author: Dr. Sarah Perkins, Center for Infectious Disease Dynamics, 208 Mueller Laboratory, Penn State University, State College, PA 16803, USA. Tel: (001) 814-863-2099. Fax: (001) 814-865-9131. E-mail: [email protected]

Summary

Mathematical models of disease dynamics tend to assume that individuals within a population mix at random and so transmission is random, and yet, in reality social structure creates heterogeneous contact patterns. We investigated the effect of heterogeneity in host contact patterns on potential macroparasite transmission by first quantifying the level of assortativity in a socially structured wild rodent population (Apodemus flavicollis) with respect to the directly-transmitted macroparasitic helminth, Heligmosomoides polygyrus. We found the population to be disassortatively mixed (i.e. male mice mixing with female mice more often than same sex mixing) at a constant level over time. The macroparasite H. polygyrus has previously been shown to exhibit male-biased transmission so we used a Susceptible-Infected (SI) mathematical model to simulate the effect of increasing strengths of male-biased transmission on the prevalence of the macroparasite using empirically-derived transmission networks. When transmission was equal between the sexes the model predicted macroparasite prevalence to be 73% and infection was male biased (82% of infection in the male mice). With a male-bias in transmission ten times that of the females, the expected macroparasite prevalence was 50% and was equally prevalent in both sexes, results that both most closely resembled empirical dynamics. As such, disassortative mixing alone did not produce macroparasite dynamics analogous to those from empirical observations; a strong male-bias in transmission was also required. We discuss the relevance of our results in the context of network models for transmission dynamics and control.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. C. (2000). Nematode Parasites of Invertebrates: Their Development and Transmission. CABI Publishing, UK.Google Scholar
Anderson, R. M. and May, R. M. (1991). Infectious diseases of humans. Dynamics and control. Oxford University Press, Oxford.CrossRefGoogle Scholar
Bailey, N. T. J. (1957). The Mathematical Theory of Epidemics. Griffin, London.Google Scholar
Bansal, S., Grenfell, B. T. and Meyers, L. A. (2007). When individual behaviour matters: homogeneous and network models in epidemiology. Journal of the Royal Society Interface 4, 879891.Google Scholar
Barlow, D., Daker, B. and White, G. (1997). Assortative sexual mixing in a 15 heterosexual clinic population: a limiting factor in HIV spread? AIDS 11, 10391044.CrossRefGoogle Scholar
Cross, P. C., Lloyd-Smith, J. O., Bowers, J. A., Hay, C. T., Hofmeyr, M. and Getz, W. M. (2004). Integrating association data and disease dynamics in a social ungulate: bovine tuberculosis in African buffalo. Annales Zoologici Fennici 41, 879892.Google Scholar
Eames, K. T. D. (2007). Contact tracing strategies in heterogeneous populations. Epidemiology and Infection 135, 443454.Google Scholar
Earn, D. J. D., Rohani, P., Bolker, B. M. and Grenfell, B. T. (2000). A simple model for complex dynamical transitions in epidemics. Science 287, 667670.Google Scholar
Ferrari, N., Cattadori, I. M., Nespereira, J., Rizzoli, A. P. and Hudson, P. J. (2004). The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecology Letters 7, 8894.CrossRefGoogle Scholar
Ferrari, N., Rosà, R., Pugliese, A., and Hudson, P. J. (2007). The role of sex in parasite dynamics: model simulations on transmission of Heligmosomoides polygyrus in populations of yellow-necked mice, Apodemus flavicollis. International Journal for Parasitology 37, 341349.Google Scholar
Filipe, J. A. N., Boussinesq, M., Renz, A., Collins, R. C., Vivas-Martinez, S., Grillet, M. E., Little, M. P. and Basáñez, M. G. (2005). Human infection patterns and heterogeneous exposure in river blindness. Proceedings of the National Academy of Sciences, USA 102, 1526515270.Google Scholar
Flowerdew, J. (1984). Woodmice and Yellow-Necked Mice. Mammal Society, London, UK.Google Scholar
Garnett, G. P. and Anderson, R. M. (1996). Sexually transmitted diseases and sexual behavior: insights from mathematical models. Journal of Infectious Diseases 174, S150S161.Google Scholar
Gregory, R. D., Keymer, A. E. and Clarke, J. R. (1990). Genetics, sex and exposure: the ecology of Heligmosomoides polygyrus in the wood mouse. Journal of Animal Ecology 59, 363378.Google Scholar
Gregory, R. D., Montgomery, S. S. J. and Montgomery, W. I. (1992). Population biology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology 61, 749757.Google Scholar
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. and Morris, M. (2003). Statnet: an R package for the Statistical Modeling of Social Networks. URL: http://www.csde.washington.edu/statnet.Google Scholar
Hernandez, A. D. and Sukhdeo, M. V. K. (1995). Host grooming and the transmission strategy of Heligmosomoides polygyrus. Journal of Parasitology 81, 865869.Google Scholar
Kavaliers, M. and Colwell, D. D. (1995). Odours of parasitized males induce aversive responses in female mice. Animal Behaviour 50, 11611169.CrossRefGoogle Scholar
Keeling, M. J. and Grenfell, B. T. (1997). Disease extinction and community size: modeling the persistence of measles. Science 275, 6567.CrossRefGoogle ScholarPubMed
Keymer, A. E. (1986). Heligmosomoides polygyrus (Nematoda): the dynamics of primary and repeated infection in outbred mice. Proceedings of the Royal Society of London Series B Biological Sciences 229, 4767.Google ScholarPubMed
Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. and Getz, W. M. (2005). Superspreading and the impact of individual variation on disease emergence. Nature 438, 355359.CrossRefGoogle Scholar
Lusseau, D. and Newman, M. E. J. (2004). Identifying the role that animals play in their social networks. Proceedings of the Royal Society of London Series B Biological Sciences 271, S477S481.Google Scholar
Meyers, L. A., Newman, M. E. J. and Pourbohloul, B. (2006). Predicting epidemics on directed contact networks. Journal of Theoretical Biology 240, 400418.Google Scholar
Moore, S. L. and Wilson, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 20152018.CrossRefGoogle ScholarPubMed
Morris, M. (1995). Data driven network models for the spread of infectious disease. In Epidemic Models: Their Structure and Relation to Data. (ed. Mollison, D.) Cambridge University Press, Cambridge, 302322.Google Scholar
Naug, D, and Smith, B. (2007). Experimentally induced change in infectious period affects transmission dynamics in a social group. Proceedings of the Royal Society of London Series B – Biological Sciences 274, 6165.Google Scholar
Newman, M. E. J. (2002). Assortative mixing in networks. Physical Review Letters 89, (208701, 5 pp.).Google Scholar
Newman, M. E. J. (2003). The structure and function of complex networks. Society for Industrial and Applied Mathematics Review 45, 167256.Google Scholar
Perkins, S. E., Cattadori, I. M., Tagliapietra, V. and Hudson, P. J. (2003). Empirical evidence for key hosts in persistence of a tick-borne disease. International Journal for Parasitology 9, 909917.Google Scholar
Poulin, R. (1996). Helminth growth in vertebrate hosts: does host sex matter? International Journal for Parasitology 26, 13111315.Google Scholar
Proulx, S. R., Promislow, D. E. L. and Phillips, P. C. (2005). Network thinking in ecology and evolution. Trends in Ecology and Evolution 20, 345353.Google Scholar
Randolph, S. E. (1973). Tracking techniques for comparing individual home ranges of small mammals. Journal of Zoology 170, 509520.CrossRefGoogle Scholar
Randolph, S. E. (1977). Changing spatial relationships in a population of Apodemus sylvaticus with onset of breeding. Journal of Animal Ecology 46, 653676.CrossRefGoogle Scholar
Stradiotto, A. (2006). Ranging behaviour of yellow necked-mouse Apodemus flavicollis in an endemic area for tick-borne encephalytis (TBE) in Trentino, Italian Alps. PhD Thesis. University of Parma, Italy.Google Scholar
Wakelin, D. (1985). Parasite survival and variability in host immune responsiveness. Mammal Review 17, 1351987.Google Scholar
Wilson, K., Bjørnstad, O. N., Dobson, A. P., Merler, S., Poglayen, G., Randolph, S. E., Read, A. F. and Skorping, A. (2002). Heterogeneities in macroparasite infections: patterns and processes. In The Ecology of Wildlife Diseases (ed. Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, J. A. P. and Dobson, A. P.), pp. 644. Oxford University Press, Oxford.CrossRefGoogle Scholar
Woolhouse, M. E. J., Dye, C., Etard, J. F., Smith, T., Charlwood, J. D., Garnett, G. P., Hagan, P, Hii, J. L. K., Ndhlovu, P. D., Quinnell, R. J., Watts, C. H., Chandiwana, S. K. and Anderson, R. M. (1997). Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proceedings of the National Academy of Sciences, USA 94, 338342.Google Scholar