Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T01:15:18.309Z Has data issue: false hasContentIssue false

Effects of endotoxin and dexamethasone on cerebral malaria in mice

Published online by Cambridge University Press:  06 April 2009

A. L. Neill
Affiliation:
Department of Pathology, University of Sydney, N.S.W. 2006, Australia
N. H. Hunt
Affiliation:
Department of Pathology, University of Sydney, N.S.W. 2006, Australia

Summary

CBA/T6 and DBA/2J mice inoculated with Plasmodium berghei ANKA (PbA) develop cerebral involvement 6–8 days post-inoculation, from which the CBA mice almost invariably die and the DBA mice recover. Dexamethasone (DXM; 80 mg/kg) given to inoculated CBA mice twice, on day 3 and again within 48 h, reduced the cerebral symptoms and prevented death from cerebral malaria. Plasma tumour necrosis factor (TNF) levels, which increased at the time of the cerebral symptoms, were also reduced in these DXM-treated mice. Intravenously administered Evans Blue, a dye which binds to albumin, diffused extensively across the blood-brain barrier only during the period of cerebral symptoms, in proportion to the severity of the cerebral symptoms and the disease. In PbA-infected CBA mice, cerebral symptoms and the amount of Evans Blue diffusing into the brain tissue were both reduced by DXM treatment, but only if the steroid was given on day 3 and again within 48 h. Endotoxin injected intravascularly into PbA-infected DBA mice after day 5 resulted in an exaggeration of cerebral symptoms and death between days 6 and 9. Plasma TNF and the amount of Evans Blue in the brain parenchyma increased above normal levels in these mice. Endotoxin injections had only minor effects on the severity of the cerebral symptoms in PbA-infected CBA mice and did not cause the animals to die sooner.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Iseki, M., Barnwell, J. W., Taylor, D., Oo, M. M. & Howard, R. J. (1990). The pathology of human cerebral malaria. American Journal of Tropical Medicine and Hygiene 43, 30–7.CrossRefGoogle ScholarPubMed
Arya, S. K., Wong-Staal, F. & Gallo, R. C. (1984). Dexamethasone mediated inhibition of T cell growth factor and γ-interferon messenger RNA. Journal of Immunology 133, 273–5.CrossRefGoogle ScholarPubMed
Bailey, J. M. (1991). New mechanisms for effects of anti-inflammatory glucocorticoids Biofactors 3, 97102.Google ScholarPubMed
Boonpucknavig, V., Boonpucknavig, S., Udomsangpetch, R. & Nitiyanant, P. (1990). An immunofluorescence study of cerebral malaria: a correlation with histopathology. Archives of Pathology and Laboratory Medicine 114, 1028–34.Google ScholarPubMed
Chan-Ling, T., Neill, A. L. & Hunt, N. H. (1992). Early microvascular changes in murine cerebral malaria detected in retinal wholemounts. American Journal of Pathology 140, 1121–30.Google Scholar
Clark, I. A. (1982). Correlation between susceptibility to malaria and babesia parasites and to endotoxicity. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 47.CrossRefGoogle ScholarPubMed
Clark, I. A., Chaudhri, G. & Cowden, W. (1989). Roles of tumor necrosis factor in the illness and pathology of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 436–40.CrossRefGoogle ScholarPubMed
Clark, I. A., Cowden, W. B., Butcher, G. & Hunt, N. H. (1987 a). Possible roles of tumor necrosis factor in the pathology of malaria. American Journal of Pathology 129, 192–9.Google ScholarPubMed
Clark, I. A., Hunt, N. H. & Cowden, W. B. (1987 b). Immunopathology of malaria. In Immune Responses to Parasites (ed. Soulsby, E. J. L.), pp. 134. Boca Raton, FL: CRC Press.Google Scholar
Clark, I. A., Ilschner, S., MacMicking, J. D. & Cowden, W. B. (1990). TNF and Plasmodium berghei ANKA- induced cerebral malaria. Immunological Letters 25, 195–8.CrossRefGoogle ScholarPubMed
Clark, I. A., MacMicking, J. D., Gray, K. M., Rockett, K. A. & Cowden, W. B. (1992). Malaria mimicry with tumor necrosis factor. Contrasts between species of murine malaria and Plasmodium falciparum. American Journal of Pathology 140, 325–36.Google ScholarPubMed
Clark, I. A., Virelizier, J.-L., Carswell, E. A. & Wood, P. R. (1981). Possible importance of macrophagederived mediators in acute malaria. Infection and Immunity 32, 1058–66.CrossRefGoogle ScholarPubMed
Culpepper, J. & Lee, F. (1987). Glucocorticoid regulation of lymphokine production by T lymphocytes. Lymphokines 13, 275–6.Google Scholar
Curfs, J. H. A. J., Hermsen, C. C., Kremsner, P., Neifer, S., Meuwissen, J. H. E. T., Rooyen, N. Van & Eling, W. M. C. (1993). Tumor necrosis factor-a and macrophages in Plasmodium berghei-induced cerebral malaria. Parasitology 107, 125–34.CrossRefGoogle Scholar
Edington, G. M. (1954). Cerebral malaria in the Gold Coast African, four autopsy reports. Annual Reviews of Tropical Medicine and Parasitology 48, 300–6.CrossRefGoogle ScholarPubMed
Espevik, T. & Nissen-Meyer, J. (1986). A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor tumor necrosis factor from human monocytes. Journal of Immunological Methods 95, 99105.CrossRefGoogle ScholarPubMed
Finley, R. W., Lindsay, J. M. & Lambert, P. H. (1982). Virulent P. berghei malaria: prolonged survival and decreased cerebral pathology in cell-deficient nude mice. Journal of Immunology 129, 2213–18.CrossRefGoogle Scholar
Finley, R. W., Weintraub, J., Louis, J. A., Engers, H. D., Zubler, R. & Lambert, P.-H. (1983). Prevention of cerebral malaria by adoptive transfer of malaria specific cultured T cells into mice infected with Plasmodium berghei. Journal of Immunology 131, 1522–6.CrossRefGoogle ScholarPubMed
Franz, D. R., Lim, T. S., Raze, W. B., Arimbalam, S., Lee, M. & Lewis, G. E. (1988). Pathologic activity of Plasmodium berghei prevented but not reversed by dexamethasone. American Journal of Tropical Medicine and Hygiene 38, 249–54.CrossRefGoogle Scholar
Grau, G. E., Fajardo, L. F., Piguet, P. F., All.Et, B., Lambert, P. H. & Vassalli, P. (1987). Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237, 1210–12.CrossRefGoogle ScholarPubMed
Grau, G. E., Piguet, P. F., Vassalli, P. & Lambert, P. H. (1989 a). Tumor necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. Immunological Reviews 112, 4970.CrossRefGoogle ScholarPubMed
Grau, G. E., Piguet, P. F., Engers, J. D., Louis, J. A., Vassalli, P. & Lambert, P. H. (1986). L3T4 + T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. Journal of Immunology 137, 2348–54.CrossRefGoogle Scholar
Grau, G. E., Taylor, T. E., Molyneux, M. E., Wirima, J. J., Vassalli, P., Hammel, M. & Lambert, P. H. (1989 b). Tumor necrosis factor and disease severity in children with falciparum malaria. New England Journal of Medicine 320, 1586–91.CrossRefGoogle ScholarPubMed
Hoffman, S. L. (1982). Dexamethasone in cerebral malaria. New England Journal of Medicine 307, 318–22.Google Scholar
Hunt, N. H., Manduci, N. & Thumwood, C. M. (1993). Moderate dietary restriction protects against murine cerebral malaria. Parasitology 107, 471–6.CrossRefGoogle Scholar
Issekutz, Y. B. (1989). Effects of anti-inflammatory agents on lymphocyte migration stimulated by the interferons, tumor necrosis factor and cutaneous inflammation. International Journal of Immunopharmacology 11, 725–39.CrossRefGoogle ScholarPubMed
Jones, K. R., Cottrell, B. J., Targett, G. A. & Playfair, J. H. L. (1989). Killing of Plasmodium falciparum by human monocyte-derived macrophages. Parasite Immunology 11, 585–92.CrossRefGoogle ScholarPubMed
Karunaweera, N. D., Grau, G. E., Gamage, P., Carter, R. & Mendis, K. K. N. (1992). Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proceedings of the National Adacemy of Sciences, USA 89, 3200–3.CrossRefGoogle ScholarPubMed
Kern, J. A., Lamb, R. J., Reed, J. C., Daniele, R. P. & Nowell, P. C. (1988). Dexamethasone inhibition of interleukin-1 production by human monocytes: posttranscriptional mechanisms. Journal of Clinical Investigation 81, 237–44.CrossRefGoogle ScholarPubMed
Koizumi, M., Frank, L. & Massaro, D. (1985). MitOgeniC effect of endotoxin on lung and tolerance of rats to hypoxia. Journal of Applied Physiology 59, 315–19.CrossRefGoogle Scholar
Kumaratilake, L. M., Ferrante, A. & Rzepczyk, C. M. (1990). Tumor necrosis factor enhances neutrophil mediated killing of Plasmodium falciparum. Infection and Immunity 58, 788–93.CrossRefGoogle ScholarPubMed
Kwiatkowski, D., Cannon, J. G., Manogue, K. R., Cerami, A., Dinarello, C. A. & Greenwood, B. M. (1989). Tumour necrosis factor production in Falciparum malaria and its association with schizont rupture. Clinical and Experimental Immunology 77, 361–6.Google ScholarPubMed
Kwiatkowski, D., Hill, A. V., Sambou, I., Twumasi, P., Dastracane, J., Manogue, K. R., Cerami, A., Brewster, D. R. & Greenwood, B. M. (1990). TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336, 1201–4.CrossRefGoogle ScholarPubMed
Macpherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. (1985). Human cerebral malaria: a quantitative ultrastructural analysis of parasitized erythrocytic sequestration. American Journal of Pathology 119, 385401.Google ScholarPubMed
Maegraith, B. G. (1948). Pathological Processes in Malaria and Blackwater Fever. Oxford: Blackwell Scientific.Google Scholar
Mustafa, M. M., Ramilo, O., Saez-Llorens, X., Olsen, K. D., Magness, R. R. & McCracke.N, G. H. (1990). Cerebrospinal fluid prostaglandins, interleukin beta and tumor necrosis factor in bacterial meningitis. Clinical and laboratory correlations in placebo-treated and dexamethasone-treated patients. American Journal of Diseases in Children 144, 883–7.CrossRefGoogle ScholarPubMed
Nakano, T., Ohara, O., Tekaoka, H. & Akita, H. (1990). Glucocorticords suppress group II phospholipase A2 production by blocking mRNA synthesis and post transcriptional expression. Journal of Biological Chemistry 265, 12745–8.CrossRefGoogle Scholar
Namouri, S. & Hamilton, T. A. (1990). Dexamethasone down-regulates LPS-inducible gene expression in murine peritoneal macrophages. Immunopathology 19, 93101.Google Scholar
Neill, A. L., Chan-Ling, T. & Hunt, N. H. (1993). Comparisons between microvascular changes in cerebral and non-cerebral malaria in mice using the retinal wholemount technique. Parasitology 107, 477–87.CrossRefGoogle Scholar
Neill, A. L. & Hunt, N. H. (1992). Pathology of fatal and resolving Plasmodium berghei cerebral malaria in mice. Parasitology 105, 165–75.CrossRefGoogle ScholarPubMed
Peters, T., Karck, U. & Decker, K. (1990). Interdependence of tumor necrosis factor, prostaglandin E.2, and protein synthesis in lipopolysaccharide-exposed rat Küpffer cells. European Journal of Biochemistry 191, 583–9.CrossRefGoogle Scholar
Porta, J., Carota, A., Pizzolato, G. P., Wildi, E., Widmer, M. C., Margairaz, C. & Grau, G. E. (1983). Immunopathological changes in human cerebral malaria. Clinical Neuropathology 12, 142–6.Google Scholar
Prescott, M. F., McBride, C. K. & Court, M. (1990 a).Development of intimal lesions after leucocyte migration into the vascular wall. American Journal of Pathology 135, 835–40.Google Scholar
Prescott, M. F., McBride, C. K., Venturini, C. M. & Gernhardt, S. C. (1989 b). Leucocyte stimulation of intimal lesion formation is inhibited by treatment with diclofenac sodium and dexamethasone. Journal of Cardiovascular Pharmacology 14, 576–8.CrossRefGoogle ScholarPubMed
Remick, D. G., Strieter, R. M., Eskandari, M. K., Nguyen, D. T., Genord, M. A., Faiford, C. L. & Kunkel, S. L. (1990). Role of tumor necrosis factor-alpha in lipopolysaccharide-induced pathologic alterations. American Journal of Pathology 136, 4960.Google ScholarPubMed
Rest, J. R. (1982). Cerebral malaria in inbred mice. A new model and its pathology. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 410–15.CrossRefGoogle ScholarPubMed
Roman, G. C. (1991). Cerebral malaria: the unsolved riddle. Journal of Neurological Science 101, 16.CrossRefGoogle ScholarPubMed
Schetters, T., Curfs, J., Zon, A. Van, Hermsen, C. & Eling, W. (1989). Cerebral lesions in mice infected with Plasmodium berghei are the result of an immunopathological reaction. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 103–4.CrossRefGoogle ScholarPubMed
Snyder, D. S. & Unanue, E. R. (1982). Corticosteroids inhibit murine macrophage la expression and interleukin 1 production. Journal of Immunology 129, 1803–5.CrossRefGoogle Scholar
Staruch, M. J. & Wood, D. D. (1985). Reduction of serum interleukin-1-like activity after treatment with dexamethasone. Journal of Leukocyte Biology 37, 193207.CrossRefGoogle ScholarPubMed
Sturchler, D. (1989). How much malaria is there world wide? Parasitology Today 5, 3940.CrossRefGoogle Scholar
Taverne, J., Bate, C. A., Sarkar, D. A., Meager, A., Rook, C. A. & Playfair, J. H. (1990). Human and murine macrophages produce TNF in response to soluble antigens of Plasmodium falciparum. Parasite Immunology 12, 3343.CrossRefGoogle ScholarPubMed
Thumwood, C. M. (1987). The pathogenesis of murine cerebral malaria. Ph.D. thesis, Australian National University, Canberra, Australia.Google Scholar
Thumwood, C. M., Hunt, N. H., Clark, I. A. & Cowden, W. B. (1988). Breakdown of the blood-brain barrier in murine cerebral malaria. Parasitology 96, 579–89.CrossRefGoogle ScholarPubMed
Toro, G. & Roman, G. (1978). Cerebral malaria: disseminated vasculomyelinopathy. Archives of Neurology 35, 271–5.CrossRefGoogle ScholarPubMed
Usawattanakul, W., Tharavanij, S., Warrell, D. A., Looareesuwan, S., White, N. J., Supavej, S. & Soikratoke, S. (1985). Factors contributing to the development of cerebral malaria. II. Endotoxin. Clinical and Experimental Immunology 61, 562–8.Google Scholar
Waage, A. (1987). Production and clearance of tumor necrosis factor in rats exposed to endotoxin and dexamethasone. Clinical Immunology and Immunopathology 45, 348–55.CrossRefGoogle ScholarPubMed
Warrell, D. A. (1987). Pathophysiology of severe falciparum malaria in man. Parasitology 94, 553–76.CrossRefGoogle ScholarPubMed
Warrell, D. A., Looareesuwan, S., Warrell, M. J., Kasemarn, P., Intaraprasert, K., Bunnag, D. & Harinasuta, T. (1982). Dexamethasone proves deleterious in cerebral malaria. A double blind trial in 100 comatose patients. New England Journal of Medicine 306, 313–19.CrossRefGoogle ScholarPubMed
Warren, M. K. & Vogel, S. N. (1985). Opposing effects of glucocorticoids on interferon- induced murine macrophage Fc receptor and la antigen expression. Journal of Immunology 134, 2462–9.CrossRefGoogle Scholar
Wood, P. R. & Clark, I. A. (1984). Macrophages from Babesia and malaria infected mice are primed for monokine release. Parasite Immunology 6, 309–17.CrossRefGoogle ScholarPubMed
Woodruff, A. N. & Dickinson, C. T. (1968). Use of dexamethasone in cerebral malaria. British Medical Journal 3, 31–2.CrossRefGoogle ScholarPubMed
Wyler, D. J. (1988). Steroids are out in the treatment of cerebral malaria, what's next? Journal of Infectious Diseases 158, 320–4.CrossRefGoogle ScholarPubMed
Young, R. S., Bui, T., Yagel, S. K. & Towfighi, J. (1984). Effects of steroidal and non-steroidal anti- inflammatory agents in neonatal endotoxemia. Circulatory Shock 13, 161–9.Google ScholarPubMed