Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T17:18:03.821Z Has data issue: false hasContentIssue false

The effect of various metals on Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon (Salmo salar)

Published online by Cambridge University Press:  01 March 2004

A. B. S. POLÉO
Affiliation:
Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway
J. SCHJOLDEN
Affiliation:
Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway Present address: Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
H. HANSEN
Affiliation:
Zoological Museum, University of Oslo, P.O. Box 1172, Blindern, N-0318 Oslo, Norway
T. A. BAKKE
Affiliation:
Zoological Museum, University of Oslo, P.O. Box 1172, Blindern, N-0318 Oslo, Norway
T. A. MO
Affiliation:
National Veterinary Institute, P.O. Box 8156 Dep., N-0033 Oslo, Norway
B. O. ROSSELAND
Affiliation:
Norwegian Institute for Water Research, P.O. Box 173 Kjelsås, N-0411 Oslo, Norway
E. LYDERSEN
Affiliation:
Norwegian Institute for Water Research, P.O. Box 173 Kjelsås, N-0411 Oslo, Norway

Abstract

Atlantic salmon (Salmo salar) parr (age 0+), infected by the ectoparasite Gyrodactylus salaris, were exposed to aqueous aluminium (Al), copper (Cu), zinc (Zn), iron (Fe) and manganese (Mn), at 4 different concentrations. There was a negative correlation between G. salaris infections and metal concentrations in both Zn- and Al-exposed salmon. In the Zn-experiment, all 4 concentrations tested caused a decrease in the G. salaris infections, while in the Al-experiment the G. salaris infection did not decline at the lowest concentration. The number of G. salaris increased continuously during the experiments in all control groups, and in all groups exposed to Cu, Fe and Mn. At the highest concentration, however, copper seemed to impair the growth of G. salaris infection. The results show that aqueous Al and Zn are environmental factors of importance controlling the distribution and abundance of the pathogen G. salaris. Other pollutants might also have an influence on the occurrence of G. salaris. Finally, the results demonstrate that aqueous Al and Zn have a stronger effect on the parasite than on the salmonid host, suggesting that both metals may be used as a pesticide to control ectoparasites such as G. salaris.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALMQUIST, E. (1959). Observations on the effect of rotenone emulsives on fish food organisms. Institute of Freshwater Research Drottningholm Report 40, 146160.Google Scholar
APPLEBY, C. & MO, T. A. (1997). Population dynamics of Gyrodactylus salaris (Monogenea) infecting Atlantic salmon, Salmo salar, parr in the River Batnfjordselva, Norway. Journal of Parasitology 83, 2330.CrossRefGoogle Scholar
ASCH, H. L. & DRESDEN, M. H. (1977). Schistosoma mansoni: effects of zinc on cercarial and schistosomule viability. Journal of Parasitology 63, 8086.CrossRefGoogle Scholar
BAKKE, T. A., HARRIS, P. D. & CABLE, J. (2002). Host specificity dynamics: observations on gyrodactylid monogeneans. International Journal for Parasitology 32, 281308.CrossRefGoogle Scholar
BAKKE, T. A., JANSEN, P. A. & HANSEN, L. P. (1990). Differences in the host resistance of Atlanticsalmon, Salmo salar, stocks to the monogenean Gyrodactylus salaris Malmberg, 1957. Journal of Fish Biology 37, 577587.Google Scholar
BAKKE, T. A., JANSEN, P. A. & HANSEN, L. P. (1991). Experimental transmission of Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes, Monogenea) from the Atlantic salmon (Salmo salar) to the European eel (Anguilla Anguilla). Canadian Journal of Zoology 69, 733737.CrossRefGoogle Scholar
BOYCE, N. P. & YAMADA, S. B. (1977). Effects of a parasite, Eubothrium salvelini (Cestoda: Pseudophyllidea), on the resistance of juvenile sockeye salmon, Oncorhynchus nerka, to zinc. Journal of the Fisheries Research Board of Canada 34, 706709.CrossRefGoogle Scholar
CHUBB, J. C. (1977). Seasonal occurrence of helminths in freshwater fishes. Part I. Monogenea. Advances in Parasitology 15, 133199.Google Scholar
CONE, D. K., MARCOGLIESE, D. J. & WATT, W. D. (1993). Metazoan parasite communities of yellow eels (Anguilla rostrata) in acidic and limed rivers of Nova Scotia. Canadian Journal of Zoology 71, 177184.CrossRefGoogle Scholar
EISLER, R. (1993). Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Biological Report 10. U.S. Department of the Interior, Fish and Wildlife Service.
EVANS, N. A. (1982 a). Effects of copper and zinc on the life cycle of Notocotylus attenuatus (Digenea: Notocotylidae). International Journal for Parasitology 12, 363369.Google Scholar
EVANS, N. A. (1982 b). Effects of copper and zinc upon the survival and infectivity of Echinoparyphium recurvatum cercariae. Parasitology 85, 295303.Google Scholar
EXLEY, C., WICKS, A. J., HUBERT, R. B. & BIRCHALL, J. D. (1996). Kinetic constraints in acute aluminium toxicity in the rainbow trout (Oncorhynchus mykiss). Journal of Theoretical Biology 179, 2531.CrossRefGoogle Scholar
GENSEMER, R. W. & PLAYLE, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Sciences and Technology 29, 315450.CrossRefGoogle Scholar
GRANDE, M., MUNIZ, I. P. & ANDERSEN, S. (1978). Relative tolerance of some salmonids to acid waters. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20, 20762084.CrossRefGoogle Scholar
GUTH, D. W. J., BLANKESPOOR, H. D. & CAIRNS jr., J. (1977). Potentiation of zinc stress caused by parasitic infection of snails. Hydrobiologia 55, 225229.CrossRefGoogle Scholar
HALMETOJA, A., VALTONEN, E. T. & KOSKENNIEMI, E. (2000). Perch (Perca fluviatilis L.) parasites reflect ecosystem conditions: a comparison of a natural lake and two acidic reservoirs in Finland. International Journal for Parasitology 30, 14371444.Google Scholar
HEGGBERGET, T. G. & JOHNSEN, B. O. (1982). Infestations by Gyrodactylus sp. of Atlantic salmon, Salmo salar L., in Norwegian rivers. Journal of Fish Biology 21, 1526.Google Scholar
JANSEN, P. A. & BAKKE, T. A. (1991). Temperature-dependent reproduction and survival of Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes, Monogenea) on Atlantic salmon (Salmo salar L.). Parasitology 102, 105112.CrossRefGoogle Scholar
JANSEN, P. A. & BAKKE, T. A. (1993 a). Regulatory processes in the monogenean Gyrodactylus salaris Malmberg – Atlantic salmon (Salmo salar L.) association. I. Field studies in southeast Norway. Fisheries Research 17, 87101.Google Scholar
JANSEN, P. A. & BAKKE, T. A. (1993 b). Regulatory processes in the monogenean Gyrodactylus salaris Malmberg – Atlantic salmon (Salmo salar L.) association. II. Experimental studies. Fisheries Research 17, 103114.Google Scholar
JOHNSEN, B. O. & JENSEN, A. J. (1991). The Gyrodactylus story in Norway. Aquaculture 98, 289302.CrossRefGoogle Scholar
JOHNSEN, B. O., MØKKELGJERD, P. I. & JENSEN, A. J.(1999). The parasite Gyrodactylus salaris on salmon parr in Norwegian rivers, status report at the beginning of year 2000. NINA Oppdragsmelding 617, 1129. (In Norwegian, English summary.)Google Scholar
KHAN, R. A. & KICENIUK, J. W. (1988). Effect of petroleum aromatic hydrocarbons on monogeneids parasitizing Atlantic cod, Gadus morhua L. Bulletin of Environmental Contamination and Toxicology 41, 94100.CrossRefGoogle Scholar
KOSKIVAARA, M., VALTONEN, E. T. & PROST, M. (1991). Seasonal occurrence of gyrodactylid monogeneans on the roach (Rutilus rutilus) and variations between four lakes of differing water quality in Finland. Aqua Fennica 21, 4755.Google Scholar
LINDAHL, P. E. & ÖBERG, K. E. (1961). The effect of rotenone on respiration and its point of attack. Experimental Cell Research 23, 228237.CrossRefGoogle Scholar
LYDERSEN, E., LÖFGREN, S. & ARNESEN, R. T. (2002). Metals in Scandinavian surface waters: effects of acidification, liming, and potential reacidification. Critical Reviews in Environmental Sciences and Technology 32, 73295.CrossRefGoogle Scholar
MALMBERG, G. (1957). Om förekomsten av Gyrodactylus på svenska fiskar. Skrifter utgivna av Södra Sveriges Fiskeriförening Årsskrift 1956, 1976. (In Swedish.)Google Scholar
MALMBERG, G. (1970). Excretory system and the marginal hooks as a basis for the systematics of Gyrodactylus (Trematoda, Monogenea). Arkiv fur Zoologi 23, 1235.Google Scholar
MARCOGLIESE, D. J. & CONE, D. K. (1996). On the distribution and abundance of eel parasites in Nova Scotia: influence of pH. Journal of Parasitology 82, 389399.CrossRefGoogle Scholar
MARCOGLIESE, D. J. & CONE, D. K. (1997). Parasite communities as indicators of ecosystem stress. Parassitologia 39, 227232.Google Scholar
McCAHON, C. P., BROWN, A. F. & PASCOE, D. (1988). The effect of the acanthocephalan Pomphyrhynchus laevis (Müller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Archives of Environmental Contamination and Toxicology 17, 239243.CrossRefGoogle Scholar
MEADOR, J. P. (1991). The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity. Aquatic Toxicology 19, 1332.CrossRefGoogle Scholar
MECHAM, J. A. & HOLLIMAN, R. B. (1975). Toxicity of zinc to Schistosoma mansoni cercaria in a chemically defined water medium. Hydrobiologia 46, 391404.CrossRefGoogle Scholar
MO, T. A. (1994). Status of Gyrodactylus salaris problems and research in Norway. In Parasitic Diseases of Fish (ed. Pike, A. W. & Lewis, J. W.), pp. 4356. Samara Publishing Ltd, Dyfed.
MORLEY, N. J., CRANE, M. & LEWIS, J. W. (2001). Toxicity of cadmium and zinc to Diplostomum spathaceum (Trematoda: Diplostomidae) cercarial survival. International Journal for Parasitology 31, 12111217.CrossRefGoogle Scholar
MORRISON, B. R. S. (1977). The effects of rotenone on the invertebrate fauna of three hill streams in Scotland. Fisheries Management 8, 128139.CrossRefGoogle Scholar
MUNKITTRICK, K. R. & DIXON, D. G. (1988). Growth, fecundity, and energy stores of white sucker (Catostomus commersoni) from lakes containing elevated levels of copper and zinc. Canadian Journal of Fisheries and Aquatic Sciences 45, 13551365.CrossRefGoogle Scholar
POLÉO, A. B. S. (1995). Aluminium polymerization – a mechanism of acute toxicity of aqueous aluminium to fish. Aquatic Toxicology 31, 347356.CrossRefGoogle Scholar
POLÉO, A. B. S., ØSTBYE, K., ØXNEVAD, S. A., ANDERSEN, R. A., HEIBO, E. & VØLLESTAD, L. A. (1997). Toxicity of acid aluminium-rich water to seven freshwater fish species: a comparative laboratory study. Environmental Pollution 96, 129139.CrossRefGoogle Scholar
SCHMAHL, G., TARASCHEWSKI, H. & MEHLHORN, H. (1989). Chemotherapy of fish parasites. Parasitology Research 75, 503511.CrossRefGoogle Scholar
SCOTT, M. E. & NOKES, D. J. (1984). Temperature-dependent reproduction and survival of Gyrodactylus bullatarudis (Monogenea) on guppies (Poecilia reticulata). Parasitology 89, 221227.CrossRefGoogle Scholar
SOLENG, A. & BAKKE, T. A. (1997). Salinity tolerance of Gyrodactylus salaris (Platyhelminthes, Monogenea): laboratory studies. Canadian Journal of Fisheries and Aquatic Sciences 54, 18371845.CrossRefGoogle Scholar
SOLENG, A., BAKKE, T. A. & HANSEN, L. P. (1998). Potential for dispersal of Gyrodactylus salaris (Platyhelminthes, Monogenea) by sea-running stages of the Atlantic salmon (Salmo salar): field and laboratory studies. Canadian Journal of Fisheries and Aquatic Sciences 55, 507514.CrossRefGoogle Scholar
SOLENG, A., POLÉO, A. B. S., ALSTAD, N. E. W. & BAKKE, T. A. (1999). Aqueous aluminium eliminates Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon. Parasitology 119, 1925.CrossRefGoogle Scholar
UNDERWOOD, A. J. (1997). Experiments in Ecology. Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge, UK.