Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T08:45:42.815Z Has data issue: false hasContentIssue false

Effect of Toxoplasma gondii infection on the junctional complex of retinal pigment epithelial cells

Published online by Cambridge University Press:  01 March 2016

ALANDERSON R. NOGUEIRA
Affiliation:
Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
FERNANDA LEVE
Affiliation:
Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rua André Cavalcanti 37, 5° Andar, Rio de Janeiro, RJ 20230-051, Brazil
JOSÉ MORGADO-DIAZ
Affiliation:
Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rua André Cavalcanti 37, 5° Andar, Rio de Janeiro, RJ 20230-051, Brazil
ROBERTO CARLOS TEDESCO
Affiliation:
Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil Disciplina de Anatomia Descritiva e Topográfica da Universidade Federal de São Paulo – UNIFESP, Rua Botucatu 740, São Paulo-SP 04023-900, Brazil
MIRIAN CLAUDIA S. PEREIRA*
Affiliation:
Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
*
*Corresponding author: Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil. E-mail: [email protected]

Summary

Ocular toxoplasmosis is the most frequent cause of uveitis, leading to partial or total loss of vision, with the retina the main affected structure. The cells of the retinal pigment epithelium (RPE) play an important role in the physiology of the retina and formation of the blood–retinal barrier. Several pathogens induce barrier dysfunction by altering tight junction (TJ) integrity. Here, we analysed the effect of infection by Toxoplasma gondii on TJ integrity in ARPE-19 cells. Loss of TJ integrity was demonstrated in T. gondii-infected ARPE-19 cells, causing increase in paracellular permeability and disturbance of the barrier function of the RPE. Confocal microscopy also revealed alteration in the TJ protein occludin induced by T. gondii infection. Disruption of junctional complex was also evidenced by scanning and transmission electron microscopy. Cell–cell contact loss was noticed in the early stages of infection by T. gondii with the visualization of small to moderate intercellular spaces. Large gaps were mostly observed with the progression of the infection. Thus, our data suggest that the alterations induced by T. gondii in the structural organization of the RPE may contribute to retinal injury evidenced by ocular toxoplasmosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bai, L., Zhang, Z., Zhang, H., Li, X., Yu, Q., Lin, H. and Yang, W. (2008). HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study. BMC Infectious Diseases 6, 877.Google Scholar
Ban, Y. and Rizzolo, L. J. (1997). A culture model of development reveals multiple properties of RPE tight junctions. Molecular Vision 31, 318. http://www.emory.edu/molvis/v3/ban.Google Scholar
Bauer, A. T., Bürgers, H. F., Rabie, T. and Marti, H. H. (2010). Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. Cerebral Blood Flow and Metabolism 30, 837848.Google Scholar
Bissell, M. J. and Radisky, D. (2001). Putting tumours in context. Nature Reviews Cancer 1, 4654.Google Scholar
Campbell, M. and Humphries, P. (2012). The blood–retina barrier: tight junctions and barrier modulation. Advances in Experimental Medicine and Biology 763, 7084.CrossRefGoogle ScholarPubMed
Commodaro, A. G., Belfort, R. N., Rizzo, L. V., Muccioli, C., Silveira, C., Burnier, M. N. Jr. and Belfort, R. Jr. (2009). Ocular toxoplasmosis: an update and review of the literature. Memórias do Instituto Oswaldo Cruz 104, 345350.CrossRefGoogle ScholarPubMed
Contini, C. (2008). Clinical and diagnostic management of toxoplasmosis in the immunocompromised patient. Parasitologia 50, 4550.Google Scholar
Cunha-Vaz, J., Bernardes, R. and Lobo, C. (2011). Blood–retinal barrier. European Journal of Ophthalmology 21, S3S9.Google Scholar
Dalton, J. E., Cruickshank, S. M., Egan, C. E., Mears, R., Newton, D. J., Andrew, E. M., Lawrence, B., Howell, G., Else, K. J., Gubbels, M. J., Striepen, B., Smith, J. E., White, S. J. and Carding, S. R. (2006). Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. Gastroenterology 131, 818829.CrossRefGoogle ScholarPubMed
Feng, S., Cen, J., Huang, Y., Shen, H., Yao, L., Wang, Y. and Chen, Z. (2011). Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE 6, e20599.Google Scholar
Furtado, J. M., Bharadwaj, A. S., Ashander, L. M., Olivas, A. and Smith, J. R. (2012). Migration of Toxoplasma gondii-infected dendritic cells across human retinal vascular endothelium. Investigative Ophthalmology and Visual Science 53, 68566862.CrossRefGoogle ScholarPubMed
Furtado, J. M., Ashander, L. M., Mohs, K., Chipps, T. J., Appukuttan, B. and Smith, J. R. (2013). Toxoplasma gondii migration within and infection of human retina. PLoS ONE 8, e54358.Google Scholar
Hamada, K., Kakigawa, N., Sekine, S., Shitara, Y. and Horie, T. (2013). Disruption of ZO-1/claudin-4 interaction in relation to inflammatory responses in methotrexate-induced intestinal mucositis. Cancer Chemotherapy and Pharmacology 72, 757765.Google Scholar
Haorah, J., Ramirez, S. H., Schall, K., Smith, D., Pandya, R. and Persidsky, Y. (2007). Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. Journal of Neurochemistry 101, 566576.Google Scholar
Holtkamp, G. M., Kijlstra, A., Peek, R. and de Vos, A. F. (2001). Retinal pigment epithelium-immune system interactions: cytokine production and cytokine-induced changes. Progress in Retinal and Eye Research 20, 2948.Google Scholar
Lu, R. Y., Yang, W. X. and Hu, Y. J. (2014). The role of epithelial tight junctions involved in pathogen infections. Molecular Biology Reports 10, 6591–610.CrossRefGoogle Scholar
Mayhan, W. G. (2001). Regulation of blood–brain barrier permeability. Microcirculation 8, 89104.Google ScholarPubMed
Moyer, A. L., Ramadan, R. T., Novosad, B. D., Astley, R. and Callegan, M. C. (2009). Bacillus cereus-induced permeability of the blood-ocular barrier during experimental endophthalmitis. Investigative Ophthalmology and Visual Science 50, 37833793.Google Scholar
Nicholson, D. H. and Wolchok, E. B. (1976). Ocular toxoplasmosis in an adult receiving long-term corticosteroid therapy. Archives of Ophthalmology 94, 248254.Google Scholar
Ramadan, R. T., Ramirez, R., Novosad, B. D. and Callegan, M. C. (2006). Acute inflammation and loss of retinal architecture and function during experimental Bacillus endophthalmitis . Current Eye Research 31, 955965.CrossRefGoogle ScholarPubMed
Rao, R. (2008). Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Frontiers in Bioscience 13, 72107226.CrossRefGoogle ScholarPubMed
Remington, J. S. and Desmonts, G. (1976). Toxoplasmosis. In Infections Diseases of the Fetus and Newborn Infant (ed. Remington, J. S. and Klein, J. O.), pp. 191332. Saunders, Philadelphia, PA, USA.Google Scholar
Rizzolo, L. J. (1997). Polarity and the development of the outer blood-retinal barrier. Histology and Histopathology 12, 10571067.Google Scholar
Rizzolo, L. J. (2014). Barrier properties of cultured retinal pigment epithelium. Experimental Eye Research 126, 1626.Google Scholar
Rizzolo, L. J., Peng, S., Luo, Y. and Xiao, W. (2011). Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Progress in Retinal and Eye Research 30, 296323.Google Scholar
Robert-Gangneux, F. and Dardé, M. L. (2012). Epidemiology of and diagnostic strategies for toxoplasmosis. Clinical Microbiology Reviews 25, 264296. Erratum in: Clinical Microbiology Reviews 25, 583.Google Scholar
Rothova, A., Meenken, C., Buitenhuis, H. J., Brinkman, C. J., Baarsma, G. S., Boen-Tan, T. N., de Jong, P. T., Klaassen-Broekema, N., Schweitzer, C. M., Timmerman, Z., de Vries, J., Zaal, M. J. W. and Kijlstra, A. (1993). Therapy for ocular toxoplasmosis. American Journal of Ophthalmology 115, 517523.CrossRefGoogle ScholarPubMed
Stanford, M. R., Tomlin, E. A., Comyn, O., Holland, K. and Pavesio, C. (2005). The visual field in toxoplasmic retinochoroiditis. British Journal of Ophthalmology 89, 812814.CrossRefGoogle ScholarPubMed
Shin, K., Fogg, V. C. and Margolis, B. (2006). Tight junctions and cell polarity. Annual Review of Cell and Developmental Biology 22, 207235.Google Scholar
Stein-Streilein, J. (2008). Immune regulation and the eye. Trends in Immunology 29, 548554.Google Scholar
Stein-Streilein, J. (2013). Mechanisms of immune privilege in the posterior eye. International Reviews of Immunology 32, 4256.Google Scholar
Sugita, S. (2009). Role of ocular pigment epithelial cells in immune privilege. Archivum Immunologiae et Therapia Experimentalis 57, 263268.Google Scholar
Talabani, H., Mergey, T., Year, H., Delair, E., Brézin, A. P., Langsley, G. and Dupouy-Camet, J. (2010). Factors of occurrence of ocular toxoplasmosis. A review. Parasite 17, 177182.Google Scholar
Tedesco, R. C., Smith, R. L., Corte-Real, S. and Calabrese, K. S. (2004). Ocular toxoplasmosis: the role of retinal pigment epithelium migration in infection. Parasitology Research 92, 467472.Google Scholar
Vallochi, A. L., Nakamura, M. V., Schlesinger, D., Martins, M. C., Silveira, C., Belfort, R. Jr. and Rizzo, L. V. (2002). Ocular toxoplasmosis: more than just what meets the eye. Scandinavian Journal of Immunology 55, 324328.CrossRefGoogle ScholarPubMed
Wang, M. F. and Lai, S. C. (2013). Fibronectin degradation by MMP-2/MMP-9 in the serum of pregnant women and umbilical cord with Toxoplasma gondii infection. Journal of Obstetrics and Gynaecology 33, 370374.Google Scholar
Wenkel, H. and Streilein, J. W. (1998). Analysis of immune deviation elicited by antigens injected into the subretinal space. Investigative Ophthalmology and Visual Science 39, 18231834.Google ScholarPubMed
Willermain, F., Caspers-Velu, L., Nowak, B., Stordeur, P., Mosselmans, R., Salmon, I., Velu, T. and Bruyns, C. (2002). Retinal pigment epithelial cells phagocytosis of T lymphocytes: possible implication in the immune privilege of the eye. British Journal of Ophthalmology 86, 14171421.Google Scholar
Zhang, C. O., Wang, J. Y., Koch, K. R. and Keay, S. (2005). Regulation of tight junction proteins and bladder epithelial paracellular permeability by an antiproliferative factor from patients with interstitial cystitis. Journal of Urology 174, 23822387.Google Scholar