Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T00:55:20.022Z Has data issue: false hasContentIssue false

The effect of proteases and iodination on the adherent behaviour of Plasmodium falciparum-infected erythrocytes

Published online by Cambridge University Press:  06 April 2009

I. Crandall
Affiliation:
Department of Biology, University of California, Riverside, CA 92521, USA
D. Demers
Affiliation:
Department of Biology, University of California, Riverside, CA 92521, USA
I. W. Sherman*
Affiliation:
Department of Biology, University of California, Riverside, CA 92521, USA
*
Corresponding author. Tel: 909 787 5905. Fax: 909 787 4286. E-mail: [email protected].

Summary

Plasmodium falciparum-infected erythrocytes were treated with proteases (trypsin, chymotrypsin, pronase, or V8 protease) or iodinated and the effect of these treatments on the cytoadherent behaviour of the cells was determined. As previously observed, protease treatment reduced cytoadherence. However, it was also found that the P. falciparum-induced adhesin, pfalhesin, was not removed by protease treatment. Gelatin flotation experiments and scanning electron microscopical examination of the treated cells indicated that protease exposure resulted in changes in the knob structures on the cells, which are known to affect the adherent behaviour of the cells. Iodination was found to be an effective method of inactivating pfalhesin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baruch, D. I., Pasloske, B. L., Singh, H. B., Bi, X., Ma, X. C., Feldman, M., Taraschi, T. F. & Howard, R. J. (1995). Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.CrossRefGoogle Scholar
Berendt, A., Simmons, D. L., Tansy, J., Newbold, C. I. & Marsh, K. (1989). Intercellular adhesion molecule 1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature, London 341, 5759.CrossRefGoogle ScholarPubMed
Crandall, I., Collins, W. E., Gysin, J. & Sherman, I. W. (1993). Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of Plasmodium falciparum (human malaria). Proceedings of the National Academy of Sciences, USA 90, 47034707.CrossRefGoogle Scholar
Crandall, I., Land, K. M. & Sherman, I. W. (1994 a). Plasmodium falciparum: Pfalhesin and CD36 form an adhesin/ receptor pair that is responsible for the pH dependent portion of cytoadherence/sequestration. Experimental Parasitology 78, 203209.CrossRefGoogle Scholar
Crandall, I. E., Guthrie, N., Demers, D. & Sherman, I. W. (1994 b). Plasmodium falciparum: CD36 dependent cytoadherence or resetting of infected erythrocytes is modulated by knobs. Cell Adhesion and Communication 2, 503510.CrossRefGoogle ScholarPubMed
Crandall, I. E., Guthrie, N. & Sherman, I. W. (1996). Plasmodium falciparum: Naturally occurring rabbit immunoglobulins recognize human band 3 peptide motifs and malaria-infected red cells. Experimental Parasitology 82, 4553.CrossRefGoogle ScholarPubMed
Crandall, I. & Sherman, I. W. (1991). Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band 3 protein. Parasitology 102, 335340.CrossRefGoogle ScholarPubMed
Crandall, I. E. & Sherman, I. W. (1994). Antibodies to synthetic peptides based on band 3 motifs react specifically with Plasmodium falciparum (human malaria)-infected erythrocytes and block cytoadherence. Parasitology 108, 389396.CrossRefGoogle ScholarPubMed
Crandall, I., Smith, H. & Sherman, I. W. (1991). Plasmodium falciparum: the effect of pH and Ca2+ concentration on the in vitro cytoadherence of infected erythrocytes to amelanotic melananoma cells. Experimental Parasitology 73, 362368.CrossRefGoogle ScholarPubMed
David, P. H., Hommel, M., Miller, L. H., Udeinya, I. J. & Olingo, L. D. (1983). Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proceedings of the National Academy of Sciences, USA 80, 50755079.CrossRefGoogle ScholarPubMed
Gruenberg, J., Allred, D. R. & Sherman, I. W. (1983). Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Cell Biology 97, 795802.CrossRefGoogle ScholarPubMed
Guthrie, N., Crandall, I. E., Marini, S. & Sherman, I. W. (1995). Monoclonal antibodies which recognize human band 3 residues 542–555 recognize different conformations of this protein in uninfected and Plasmodium falciparum-infected erythrocytes. Molecular and Cellular Biochemistry 144, 117123.CrossRefGoogle ScholarPubMed
Howard, R., Handunnetti, S., Hasler, T., Gilladoga, A., De Aguiar, J., Pasloske, B., Morehead, D., Albrecht, G. & Van Schravendijk, M. (1990). Surface molecules on Plasmodium falciparum-infected erythrocytes involved in adherence. American Journal of Tropical Medicine and Hygiene 43, 1529.CrossRefGoogle ScholarPubMed
Iqbal, J., Siddique, A. B., Ahlborg, N., Perlmann, P. & Berzins, K. (1995). Cytoadherence-related homologous motifs in Plasmodium falciparum antigen Pf155/RESA and erythrocyte band 3 protein. Parasitology 110, 503511.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. P. (1980). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418420.CrossRefGoogle Scholar
Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. (1984). Identification of a strain specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Experimental Medicine 159, 15671575.CrossRefGoogle ScholarPubMed
Ockenhouse, C., Klotz, F. W., Tandon, N. N. & Jamison, G. A. (1992). Sequestrin, a CD36 recoginition protein on Plasmodium falciparum malaria-infected erythrocytes identified by anti-idiotype antibodies. Proceedings of the National Academy of Sciences, USA 88, 31753179.CrossRefGoogle Scholar
Pasvol, G., Wilson, J. M., Smalley, M. E. & Brown, J. (1978). Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Annals of Tropical Medicine and Parasitology 72, 8788.CrossRefGoogle ScholarPubMed
Pongponratin, E., Riganti, M., Punpoowong, B. & Aikawa, M. (1991). Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. American Journal of Tropical Medicine and Hygiene 44, 168175.CrossRefGoogle Scholar
Sherman, I. W., Crandall, I. E., Guthrie, N. & Land, K. M. (1995). The sticky secrets of sequestration. Parasitology Today 11, 378384.CrossRefGoogle ScholarPubMed
Sherman, I. W. & Valdez, E. (1989). In vitro cytoadherence of Plasmodium falciparum-infected erythrocytes to melanoma cells: factors affecting adhesion. Parasitology 98, 359369.CrossRefGoogle ScholarPubMed
Smith, J., Chitnis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., Pinches, R., Newbold, C. I. & Miller, L. H. (1995). Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101110.CrossRefGoogle ScholarPubMed
Su, X., Heatwole, V. M., Wertheimer, S. P., Guinet, F., Herrfeldt, J. A., Peterson, D. S., Ravetch, J. A. & Wellems, T. E. (1995). A large and diverse gene family (var) encodes 200–350 kD proteins implicated in the antigenic variation and cytoadherence of Plasmodium falciparum-infected erythrocytes. Cell 82, 89100.CrossRefGoogle Scholar
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673675.CrossRefGoogle ScholarPubMed
Udeinya, I., Schmidt, J. A., Aikawa, M., Miller, L. H. & Green, I. (1981). Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 213, 555557.CrossRefGoogle ScholarPubMed
World Health Organization (1990). World malaria situation 1988. WHO Bulletin 68, 667670.Google Scholar
World Health Organization (1992). World malaria situation in 1990. WHO Bulletin Epidemiology Record 70, 801804.Google Scholar