Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T16:46:45.182Z Has data issue: false hasContentIssue false

Effect of Plasmodium yoelii nigeriensis infection on hepatic and splenic glutathione-S-transferase(s) in Swiss albino and db/+ mice: efficacy of mefloquine and menadione in antimalarial chemotherapy

Published online by Cambridge University Press:  13 March 2007

R. AHMAD
Affiliation:
Division of Biochemistry, P.O. Box No. 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
A. K. SRIVASTAVA*
Affiliation:
Division of Biochemistry, P.O. Box No. 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow-226001, India
*
*Corresponding author. Tel: +91 522 2612411 18 (Ext. 4346). Fax: +91 522 2623938. E-mail: [email protected]

Summary

The present report deals with the status of hepatic and splenic glutathione-S-transferase (GST) activities in mice during experimental infection with Plasmodium yoelii nigeriensis and subsequent treatment of infected mice with mefloquine (Mf) and menadione (Md). The infection caused significant decline in the hepatic and splenic glutathione-S-transferase (GST) activities of albino and db/+ mice. The decline was observed in the levels of both cytosolic and microsomal GST(s) of liver and spleen in both types of mice. Intraperitoneal administration of mefloquine at a dose of 5 mg/kg and menadione at a dose of 100 mg/kg, twice daily from day 1 p.i. (day 0) until day 10, caused restoration in the levels of hepatic as well as splenic GST(s), albeit to varying degrees. Mf was able to suppress parasitaemia by day 5 in the case of albino mice and by day 3 in the case of db/+ mice but was unable to cure both types of mice completely. On the other hand, Md caused a delay in maturation of infection in both cases, but could not cure the mice.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M., Suzuki, M. and Gutierrez, Y. (1980). Pathology of malaria. In Malaria (ed. Krier, J. P.), vol. II, pp. 47102. Academic Press, New York.Google Scholar
Alvares, A. P., Veng, T. H., Scheibel, L. W. and Hollingdale, M. R. (1984). Impairment of hepatic cytochrome P-450 dependent monooxygenases by the malaria parasites Plasmodium berghei. Molecular and Biochemical Parasitology 13, 277282.CrossRefGoogle Scholar
Arora, K. and Srivastava, A. K. (2005). Antimalarial efficacy of methylene blue and menadione and their effect on glutathione metabolism of Plasmodium yoelii-infected albino mice. Parasitology Research 97, 521526.Google Scholar
Bray, G. A. and York, D. A. (1979). Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiological Reviews 59, 719.Google Scholar
Brodie, R. B. and Gillette, J. R. (1971). Concepts in biochemical pharmacology. In Handbook of Experimental Pharmacology, Part II. Springer-Verlag, Berlin.Google Scholar
Chander, R. and Kapoor, N. K. (1990). Hepatic superoxide dismutase, catalase and lipid peroxidation products in Mastomys natalensis infected with Plasmodium berghei. Indian Journal of Experimental Biology 28, 195197.Google ScholarPubMed
Chander, R., Kapoor, N. K. and Dhawan, B. N. (1992). Effect of picroliv on glutathione metabolism in liver and brain of Mastomys natalensis infected with Plasmodium berghei. Indian Journal of Experimental Biology 30, 711714.Google Scholar
Clark, I. A., Chaudhri, G. and Cowden, W. B. (1989). Some roles of free radicals in malaria. Free Radicals in Biology and Medicine 6, 315321.CrossRefGoogle ScholarPubMed
Di Monte, D., Ross, D., Bellomo, G., Eklöw, L. and Orrenuis, S. (1984). Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Archives of Biochemistry and Biophysics 235, 334342.CrossRefGoogle Scholar
Dow, G., Bauman, R., Caridha, D., Cabezas, M., Du, F., Gomez-Lobo, R., Park, M., Smith, K. and Cannard, K. (2006). Mefloquine induces dose-related neurological effects in a rat model. Antimicrobial Agents and Chemotherapy 50, 10451053.CrossRefGoogle ScholarPubMed
Emudianughe, T. S., Bickel, Q. D., Taylor, M. G. and Andrews, B. (1985). Effect of Plasmodium berghei infection on benzoic acid metabolism in mice. Experientia 41, 14071409.Google Scholar
Gutierez, Y., Aikawa, M., Fremount, H. N. and Sterling, C. R. (1976). Experimental infection of Aotus monkeys with Plasmodium falciparum. Light and microscopic changes. Annals of Tropical Medicine and Parasitology 70, 2544.CrossRefGoogle Scholar
Habig, H. W., Pabst, M. J. and Jakoby, W. B. (1974). Glutathione-S-transferase(s): the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 71307139.Google Scholar
Kato, R. (1977). Drug metabolism under pathological and abnormal physiological states in animals and man. Xenobiotica 7, 2572.CrossRefGoogle Scholar
Lopez-Shirley, K., Zhang, F., Gosser, D., Scott, M. and Meshnick, S. R. (1994). Antimalarial quinones: redox potential dependence of methemoglobin formation and hence release in erythrocytes. Journal of Laboratory and Clinical Medicine 123, 126130.Google Scholar
Lowry, O. H., Roseborough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265276.CrossRefGoogle ScholarPubMed
Mansor, S. M., Edwards, G., Roberts, P. J. and Ward, S. A. (1991). The effect of malaria infection on paracetamol disposition in the rat. Biochemical Pharmacology 418, 17071711.Google Scholar
McCarthy, J. S., Furner, R. L., Van Dyke, K. and Stitzel, R. E. (1970). Effect of malarial infection on host drug metabolizing enzymes. Biochemical Pharmacology 19, 13411349.CrossRefGoogle ScholarPubMed
Mosialou, E., Ekstrom, G., Adang, A. E. P. and Morgensiern, R. (1973). Evidence that rat liver microsomal glutathione transferase is responsible for glutathione dependent protection against lipid peroxidation. Biochemical Pharmacology 45, 16451651.Google Scholar
Peters, W. M. M., Kock, L., Nagengast, F. M. and Roelofs, H. M. J. (1970). Immunodetection with a monoclonal antibody of glutathione-S-transferase mu in patients with and without carcinomas. Biochemical Pharmacology 39, 591597.Google Scholar
Rosen, S., Royeroft, D. W., Hans, J. E. and Barry, K. G. (1967). The liver in malaria. Archives of Pathology 83, 271277.Google ScholarPubMed
Saxena, J. K., Ghatak, S., and Sen, A. B. (1981). Plasmodium berghei: studies on host metabolism using Mastomys natalensis as experimental model. Indian Journal of Malariology 18, 80.Google Scholar
Sharma, O. P., Shukla, R. P., Singh, C. and Sen, A. B. (1978). Drug metabolizing enzymes in liver infected with Plasmodium berghei. Indian Journal of Parasitology 2, 2930.Google Scholar
Sharma, O. P., Shukla, R. P., Singh, C. and Sen, A. B. (1979). Alterations in some biochemical parameters in mouse liver and spleen during infection with Plasmodium berghei. Indian Journal of Medical Research 69, 944948.Google Scholar
Siddiqi, N. J. and Alhomida, A. S. (1999). Status of hepatic oxidative stress and antioxidant defense systems during chloroquine treatment of Plasmodium yoelii nigeriensis infected mice. In vivo 13, 547550.Google ScholarPubMed
Sidorova, Y. A. and Grishanova, A. Y. (2004). Dose and time-dependent effects of menadione on enzymes of xenobiotic metabolism in rat liver. Bulletin of Experimental Biology and Medicine 137, 231234.Google Scholar
Srivastava, P., Arif, A. J. and Pandey, V. C. (1995). Status of hepatic glutathione-S-transferase(s) during Plasmodium berghei infection and chloroquine treatment in Mastomys natalensis. International Journal for Parasitology 25, 203205.Google Scholar
Srivastava, P. and Pandey, V. C. (1995). Heme oxygenase and related indices in chloroquine-resistant and sensitive strains of Plasmodium berghei. International Journal for Parasitology 25, 10611064.Google Scholar
Srivastava, P. and Pandey, V. C. (1996). Mitochondrial heme oxygenase of Mastomys coucha. International Journal for Biochemistry and Cell Biology 28, 10711077.Google Scholar
Srivastava, P. and Pandey, V. C. (2000). Studies on hepatic mitochondrial cytochrome P-450 during Plasmodium yoelii infection and pyrimethamine treatment in mice. Ecotoxicology and Environmental Safety 46, 1922.Google Scholar
Srivastava, P., Puri, S. K., Dutta, G. P. and Pandey, V. C. (1991 a). Hepatic superoxide scavenging system during Plasmodium berghei infection and chloroquine treatment. Medical Science Research 19, 307308.Google Scholar
Srivastava, P., Sahni, S. K., Puri, S. K., Dutta, G. P. and Pandey, V. C. (1991 b). Status of hepatic microsomal mixed function oxidase system during Plasmodium knowlesi infection and chloroquine treatment of Rhesus monkeys. Clinical Chemistry and Enzymology Communications 4, 203208.Google Scholar
Srivastava, P., Tripathi, L. M., Puri, S. K., Dutta, G. P. and Pandey, V. C. (1991 c). Effect of Plasmodium berghei infection and chloroquine on the hepatic drug metabolizing system of mice. International Journal for Parasitology 21, 463466.CrossRefGoogle ScholarPubMed
Srivastava, P., Puri, S. K., Dutta, G. P. and Pandey, V. C. (1992). Status of oxidative stress and antioxidant defences during Plasmodium knowlesi infection and chloroquine treatment in Macaca mulatta. International Journal for Parasitology 22, 243245.CrossRefGoogle ScholarPubMed
Srivastava, P., Puri, S. K., Dutta, G. P. and Pandey, V. C. (1993 a). Effect of Plasmodium yoelii infection and pyrimethamine treatment on renal mixed function oxidase system of mice. Journal of Protozoology Research 34, 126131.Google Scholar
Srivastava, P., Puri, S. K., Dutta, G. P. and Pandey, V. C. (1993 b). Effect of chloroquine on hepatic heme oxygenase during Plasmodium berghei infection in mice. International Journal for Parasitology 23, 231234.CrossRefGoogle ScholarPubMed
Srivastava, P., Sharma, S. N., Shukla, O. P. and Pandey, V. C. (1997). Studies on hepatic mitochondrial and microsomal mixed function oxidase system during Plasmopdium yoelii infection and inducer treatment in Swiss albino mice. Tropical Medicine and International Health 2, 989992.Google Scholar
Srivastava, R., Saxena, N., Pandey, V. C. and Dutta, G. P. (1984). Biochemical changes in cellular constituents and some enzymes in host-tissues from Plasmodium knowlesi infected monkey (Macaca mulatta). Indian Journal of Malariology 21, 8997.Google ScholarPubMed
Tekwani, B. L., Shukla, O. P. and Ghatak, S. (1988). Altered drug metabolism during parasitic diseases. Parasitology Today 4, 410.CrossRefGoogle Scholar
Thompson, P. E. and Werebel, L. M. (1972). Antimalarial Agents, Chemistry and Pharmacology. Academic Press, New York.Google Scholar
Von brand, T. (1973). Biochemistry of Parasites. 2nd Edn. Academic Press, New York.Google Scholar