Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T17:17:18.307Z Has data issue: false hasContentIssue false

The effect of Plasmodium falciparum exo-antigens on the morphology of uninfected erythrocytes

Published online by Cambridge University Press:  06 April 2009

D. G. Read
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Herston, Queensland 4006, Australia
G. R. Bushell
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Herston, Queensland 4006, Australia
C. Kidson
Affiliation:
Queensland Institute of Medical Research, Bramston Terrace, Herston, Queensland 4006, Australia

Summary

It was observed that uninfected red cells resuspended in supernatant from Plasmodium falciparum cultures, then examined between a glass slide and cover-slip, assumed varying morphologies. A series of experiments suggested that P. falciparum releases molecules which cause red cells to become stomatocytic (cupped). These molecules, some of which are heat- stable, have an apparent molecular weight < 12 kDa, are released at or about schizogony, and do not bind tightly to erythrocytes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, J. S. (1978). Relations between membrane monolayers in some red cell shape transformations. Journal of Theoretical Biology 75, 487501.CrossRefGoogle ScholarPubMed
Bessis, M. (1972). Red cell shapes. An illustrated classification and its rationale. Nouvelle Revue Française d'Hématologie 12, 721–46.Google ScholarPubMed
Brecher, G. & Bessis, M. (1972). Present status of spiculed red cells and their relationship to the discocyte-echinocyte transformation: a critical review. Blood 40, 333–44.CrossRefGoogle Scholar
Brinkman, R. & Van Dam, E. (1920). Studien zur Biochemie der Phosphatide und Sterine. II. Biochemische Zeitschrift 108, 5260.Google Scholar
Brown, G. V., Culvenor, J. G., Crewther, P. E., Bianco, A. E., Coppel, R. L., Saint, R. B., Stahl, H-D., Kemp, D. J. & Anders, R. F. (1985). Localization of the ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum in merozoites and ring-infected erythrocytes. Journal of Experimental Medicine 162, 774–9.CrossRefGoogle ScholarPubMed
Butcher, G. A. (1979). Factors affecting the in vitro culture of Plasmodium falciparum and Plasmodium knowlesi. Bulletin of the World Health Organization 57, Suppl. 1, 17–.Google ScholarPubMed
Camus, D. & Hadley, T. J. (1985). A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230, 553–6.CrossRefGoogle ScholarPubMed
Deuticke, B. (1968). Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochimica et Biophysica Acta 163, 494500.CrossRefGoogle ScholarPubMed
Evans, E. A. (1974). Bending resistance and chemically induced moments in membrane bilayers. Biophysical Journal 14, 923–31.CrossRefGoogle ScholarPubMed
Feo, C. (1972). Transformation discocyte-ehinocyte role de la formation de lysolecithine dans le plasma. Nouvelle Revue Française d'Hématologie 12, 455–63.Google Scholar
Jensen, J. B. & Trager, W. (1977). Plasmodium falciparum in culture: use of outdated erythrocytes and description of the candle jar method. Journal of Parasitology 63, 883–6.CrossRefGoogle ScholarPubMed
Jepsen, S. & Andersen, B. J. (1981). Immunoadsorbant isolation of antigens from the culture medium of in vitro cultivated Plasmodium falciparum. Acta Pathologica et Microbiologica Scandinavia, C89, 99103.Google ScholarPubMed
Kilejian, A. (1976). Does a histidine-rich protein from Plasmodium lophurae have a function in merozoite penetration? Journal of Protozoology 23, 272–7.CrossRefGoogle ScholarPubMed
Lambros, C. & Vanderberg, J. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418–20.CrossRefGoogle ScholarPubMed
Mehta, N. G. (1983). Role of membrane integral proteins in the modulation of red cell shape in albumin, dinitrophenol, and the glass effect. Biochimica et Biophysica Acta 762, 918.CrossRefGoogle ScholarPubMed
Osisanya, J. O. S., Gould, S. & Warhurst, D. C. (1981). A simplified culture technique for Plasmodium falciparum. Annals of Tropical Medicine and Parasitology 75, 107–9.CrossRefGoogle Scholar
Sheetz, M. P. & Alhanaty, E. (1983). Bilayer sensor model of erythrocyte shape control. Annals of the New York Academy of Sciences 416, 5865.CrossRefGoogle ScholarPubMed
Sheetz, M. P. & Singer, S. J. (1974). Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proceedings of the National Academy of Sciences, USA 71, 4457–61.CrossRefGoogle ScholarPubMed