Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T01:02:59.305Z Has data issue: false hasContentIssue false

Effect of haemin on growth, protein content and the antioxidant defence system in Trypanosoma cruzi

Published online by Cambridge University Press:  22 February 2007

A. CICCARELLI
Affiliation:
Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET-UBA, Argentina
L. ARAUJO
Affiliation:
Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET-UBA, Argentina Departamento de Química Biológica, FCEN-UBA, Argentina
A. BATLLE*
Affiliation:
Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET-UBA, Argentina
E. LOMBARDO
Affiliation:
Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET-UBA, Argentina Departamento de Química Biológica, FCEN-UBA, Argentina
*
*Corresponding author: Viamonte 1881, 10 “A”, CP-1056 Buenos Aires, Argentina. Tel: +5411 4812 3357. Fax: +5411 4811 7447. E-mail: [email protected]

Summary

A nutritional characteristic of trypanosomatid protozoa is that in vitro they need a haem-compound as a growth factor, which is supplied as haemoglobin, haematin or haemin. Because haemin and related porphyrins are an important source of oxidative stress in biological systems, the effect of haemin on growth, protein content and the antioxidant defence system in Trypanosoma cruzi was evaluated. We have observed that, in epimastigotes grown under different haemin concentrations in the culture medium (0–30 mg/l), 5 mg/l was the haemin concentration yielding optimum growth. Above 15 mg/l there was a clear decrease in growth rate, producing the epimastigote to amastigote transformation. Such morphological change was observed together with a marked injury of the enzymatic machinery of the parasite, leading to diminished protein synthesis as well as lower activity of the antioxidant enzymes (superoxide dismutase, ascorbate peroxidase and trypanothione reductase), reduced total thiol content and a marked increase in the HaemOx-1 activity and expression. The current work demonstrates that there is a correlation between higher haemin concentrations in the culture medium and oxidative damage in the cells. Under these conditions induction of HaemOx-1 would indicate the important role of this enzyme as an antioxidant defence response in Trypanosoma cruzi.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, S. G., Polo, C. F., Enriquez de Salamanca, R. and Batlle, A. (1996). Mechanistic studies on uroporphyrin I-induced photoinactivation of some heme-enzymes. International Journal Biochemistry and Cell Biology 28, 415420. doi: 1357-2725(95)00159-X.CrossRefGoogle ScholarPubMed
Ariyanayagam, M. and Fairlamb, A. (2001). Ovothiol and trypanothione as antioxidants in trypanosomatids. Molecular and Biochemical Parasitolology 115, 189198. doi: 10.106/S0166-6851(01)00285-7.CrossRefGoogle ScholarPubMed
Boveris, A., Sies, H., Martino, E. E., Docampo, R., Turrens, J. F. and Stoppani, A. O. M. (1980). Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. The Biochemical Journal 188, 643648.CrossRefGoogle ScholarPubMed
Chen, J. and London, I. (1995). Regulation of protein synthesis by heme-regulated eIF-2α kinase. Trends in Biochemical Science 20, 105108. doi: 10.1016/S0968-0004(00)88975-6.CrossRefGoogle Scholar
Erario, M. A., Gonzales, S., Noriega, G. O. and Tomaro, M. L. (2002). Bilirubin and ferritin as protectors against hemin-induced oxidative stress in rat liver. Cellular and Molecular Biology 48, 87878884.Google ScholarPubMed
Foresti, R., Clark, J. E., Green, C. J. and Motterlini, R. (1997). Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. The Journal of Biological Chemistry 272, 1841118417.CrossRefGoogle ScholarPubMed
Kumar, S. and Bandyopadhyay, U. (2005). Free heme toxicity and its detoxification systems in human. Toxicology Letters 157, 175188. doi: 10.1016/j.toxlet.2005.03.004.CrossRefGoogle ScholarPubMed
Lombardo, M. E., Araujo, L. S. and Batlle, A. (2003). 5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi. The International Journal of Biochemistry and Cell Biology 35, 12631271. doi: 10.1016/S1357-2725(03)00033-5.CrossRefGoogle ScholarPubMed
Lowry, O. H., Roseborough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Maines, M. (1997). The heme oxygenase system: a regulator of second messenger gases. Annual Review of Pharmacology and Toxicology 37, 517554. doi: 10.1146/annurev.pharmtox.37.1.517.CrossRefGoogle ScholarPubMed
Motterlini, R., Green, C. and Foresti, R. (2002). Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxidants and Redox Signaling 4, 615624.CrossRefGoogle ScholarPubMed
Naughton, P., Foresti, R., Bains, S. K., Hoque, M., Green, C. and Motterlini, R. (2002). Induction of heme oxygenase-1 by nitrosative stress. A role for nitroxyl anion. The Journal of Biological Chemistry 277, 265275. doi: 10.1074/jbc.M203863200.CrossRefGoogle ScholarPubMed
Pal, J. and Joshi-Purandare, M. (2001). Dose-dependent differential effect of hemin on protein synthesis and cell proliferation in Leishmania donovani promastigotes cultured in vitro. Journal of Biosciences 26, 225231.CrossRefGoogle ScholarPubMed
Paoletti, F., Aldinucci, D., Mocali, A. and Caparrini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry 154, 536541.CrossRefGoogle ScholarPubMed
Rossi, R., Cardaioli, E., Scaloni, A., Amiconi, G. and Di Simplicio, P. (1995). Thiol groups in proteins as endogenous reductants to determine glutathione-protein mixed disulphides in biological systems. Biochimica et Biophysica Acta 1243, 230238. doi: 10.1016/0304-4165(94)00133-I.CrossRefGoogle ScholarPubMed
Tomaro, M. L. and Batlle, A. M. (2002). Bilirubin: its role in cytoprotection against oxidative stress. The International Journal of Biochemistry and Cell Biology 34, 216220. doi: 10.1016/S1357-2725(01)00130-3.CrossRefGoogle ScholarPubMed
Turrens, J. F. (2004). Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa. Molecular Aspects of Medicine 25, 211220. doi: 10.1016/j.mam.2004.02.021.CrossRefGoogle ScholarPubMed
Wilkinson, S. R., Obado, S. O., Mauricio, E. L. and Kelly, J. M. (2002). Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proceedings of the National Academy of Sciences, USA 99, 1345313458. doi: 10.1073/pnas.202422899.CrossRefGoogle ScholarPubMed
Wilkinson, S. R., Hom, D., Prathalingam, S. R. and Kelly, J. M. (2003). RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. The Journal of Biological Chemistry 278, 3164031646. doi: 10.1074/jbc.M303035200.CrossRefGoogle Scholar
Zaidenberg, A., Tournier, H. A., Schinella, G. R. and Buschiazzo, H. O. (2000). Trypanosoma cruzi: Obtención de amastigotes extracelulares y estudio de crecimiento en diferentes condiciones de cultivo. Revista Latinoamericana de Microbiología 42, 2126.Google Scholar