Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T18:18:47.090Z Has data issue: false hasContentIssue false

Effect of GSK-3 activity, enzymatic inhibition and gene silencing by RNAi on tick oviposition and egg hatching

Published online by Cambridge University Press:  26 May 2010

ARIANNE FABRES
Affiliation:
Laboratório de Química e Função de Proteínas e Peptídeos – CBB – UENF, Avenida Alberto Lamego, 2000, Horto, Campos dos Goytacazes, RJ, Brazil, CEP 28015-620
CAROLINE PINTO DE ANDRADE
Affiliation:
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, RS, 91501-970, Brazil
MELINA GUIZZO
Affiliation:
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, RS, 91501-970, Brazil
MARCOS HENRIQUE F. SORGINE
Affiliation:
Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
GABRIELA DE O. PAIVA-SILVA
Affiliation:
Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
AOI MASUDA
Affiliation:
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, RS, 91501-970, Brazil Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
ITABAJARA DA SILVA VAZ Jr
Affiliation:
Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, RS, 91501-970, Brazil Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
CARLOS LOGULLO*
Affiliation:
Laboratório de Química e Função de Proteínas e Peptídeos – CBB – UENF, Avenida Alberto Lamego, 2000, Horto, Campos dos Goytacazes, RJ, Brazil, CEP 28015-620
*
*Corresponding author: Laboratório de Química e Função de Proteínas e Peptídeos – CBB – UENF, Avenida Alberto Lamego, 2000, Horto, Campos dos Goytacazes, RJ, Brazil, CEP 28015-620. Tel: + 55 22 27261467. Fax: +55 22 27261520. E-mail: [email protected]

Summary

Glycogen synthase kinase-3 (GSK-3) is classically described as a key enzyme involved in glycogen metabolism in mammals. It has been shown to be highly conserved among several organisms, mainly in the catalytic domain region. This enzyme has already been described in Rhipicephalus (Boophilus) microplus and the ovaries of females appeared to be the major site of GSK-3 transcription. The treatment with GSK-3 specific inhibitor (alsterpaullone, bromo-indirubin-oxime 6 and indirubin-3-oxime) caused a reduction in oviposition and egg hatching in completely engorged female ticks. The effect was more pronounced in partially engorged females when alsterpaullone was administrated by artificial capillary feeding. Moreover, GSK-3 gene silencing by RNAi in partially engorged females reduced significantly both oviposition and hatching. The study of tick embryogenesis and proteins that participate in this process has been suggested as an important means for the development of novel strategies for parasite control. GSK-3 is an essential protein involved in embryonic processes and for this reason it has already been suggested as a possible antigen candidate for tick control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acevedo, N., Wang, X., Dunn, R. L. and Smith, G. D. (2007). Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Molecular Reproduction and Development 74, 178188. doi: 10.1002/mrd.20495.CrossRefGoogle ScholarPubMed
Aljamali, M. N., Sauer, J. R. and Essenberg, R. C. (2002). RNA interference: applicability in tick research. Experimental and Applied Acarology 28, 8996. doi: 10.1023/A:1025346131903.Google Scholar
Barillas, R., Friehs, I., Cao-Danh, H., Martinez, J. F. and del Nido, P. J. (2007). Inhibition of glycogen synthase kinase-3β improves tolerance to ischemia in hypertrophied hearts. The Annals of Thoracic Surgery 84, 126133. doi: 10.1016/j.athoracsur.2007.02.015.CrossRefGoogle ScholarPubMed
Bradley, W. D. and Woodgett, J. R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science 116, 11751186. doi: 10.1242/10.1242/jcs.00384.Google Scholar
Catteruccia, F., Benton, J. P. and Crisanti, A. (2005). An Anopheles transgenic sexing strain for vector control. Nature Biotechnology 23, 14141417. doi: 10.1038/nbt1152.CrossRefGoogle ScholarPubMed
Coghlan, M. P., Culbert, A. A., Cross, D. A. E., Corcoran, S. L., Yates, J. W., Pearce, N. J., Rausch, O. L., Murphy, G. J., Carter, P. S., Cox, L. R., Mills, D., Brown, M. J., Haigh, D., Ward, R. W., Smith, D. G., Murray, K. J., Reith, A. D. and Holder, J. C. (2000). Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chemistry & Biology 7, 793803. doi: 10.1016/S1074-5521(00)00025-9.CrossRefGoogle ScholarPubMed
Da Silva Vaz, I. Jr.,, Logullo, C., Sorgine, M., Velloso, F. F., Rosa de Lima, M. F., Gonzales, J. C., Masuda, H., Oliveira, P. L. and Masuda, A. (1998). Immunization of bovines with an aspartic proteinase precursor isolated from Boophilus microplus eggs. Veterinary Immunology and Immunopathology 66, 331341. doi: 10.1016/S0165-2427(98)00194-9.CrossRefGoogle ScholarPubMed
de la Fuente, J., Almazán, C., Blas-Machado, U., Naranjo, V., Mangold, A. J., Blouin, E. F., Gortazar, C. and Kocan, K. M. (2006). The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood digestion and reproduction. Vaccine 24, 40824095. doi:10.1016/j.vaccine.2006.02.046.CrossRefGoogle Scholar
de la Fuente, J. and Kocan, K. M. (2006). Strategies for development of vaccines for control of ixodid tick species. Parasite Immunology 28, 275283. doi: 10.1111/j.1365-3024.2006.00828.x.CrossRefGoogle ScholarPubMed
Dornelas, M. C., Lejeune, B., Dron, M. and Kreis, M. (1998). The Arabidopsis SHAGGY related protein kinase (ASK) gene family: structure, organization and evolution. Gene 212, 249257. doi: 10.1016/S0378-1119(98)00147-4.CrossRefGoogle ScholarPubMed
Ferkey, D. M. and Kimelman, D. (2000). GSK-3: New thoughts on an old enzyme. Developmental Biology 225, 471479. doi: 10.1006/dbio.2000.9816.CrossRefGoogle Scholar
Frame, S. and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. The Biochemical Journal 359, 116.CrossRefGoogle ScholarPubMed
Emily-Fenouil, F., Ghiglione, C., Lhomond, G., Lepage, T. and Gache, C. (1998). GSK-3b/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125, 24892498.Google Scholar
Grimes, C. A. and Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Progress in Neurobiology 65, 391426. doi: 10.1016/S0301-0082(01)00011-9.CrossRefGoogle ScholarPubMed
He, X., Saint-Jeannet, J. P., Woodgett, J. R., Varmus, H. E. and Dawid, I. B. (1995). Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature, London 374, 617622. doi: 10.1038/374617a0.Google Scholar
Henschel, A., Buchholz, F. and Habermann, B. (2004). DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Research 32, 113120. doi:10.1093/nar/gkh408.CrossRefGoogle ScholarPubMed
Hoeflich, K. P., Luo, J., Rubie, E. A., Tsao, M. S., Jin, O. and Woodgett, J. R. (2000). Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature, London 406, 8690. doi: 10.1038/35017574.CrossRefGoogle ScholarPubMed
Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S. and Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3b and b-catenin and promotes GSK-3b-dependent phosphorylation of b-catenin. The EMBO Journal 17, 13711384. doi: 10.1093/emboj/17.5.1371.CrossRefGoogle Scholar
Jope, R. S. and Johnson, G. V. W. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends in Biochemical Sciences 29, 95–102. doi:10.1016/j.tibs.2003.12.004.CrossRefGoogle ScholarPubMed
Kocan, K. M., Manzano-Roman, R. and de la Fuente, J. (2007). Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA. Parasitology Research 100, 14111415. doi: 10.1007/s00436-007-0483-1.Google Scholar
Kocan, K., Zivkovic, Z., Blouin, E. F., Naranjo, V., Almazán, C, Mitra, R. and de la Fuente, J. (2009). Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Developmental Biology 9, 42. doi:10.1186/1471-213X-9-42.CrossRefGoogle ScholarPubMed
Kurscheid, S., Lew-Tabor, A. E., Valle, M. R., Bruyeres, A. G., Doogan, V. J., Munderloh, U. G., Guerrero, F. D., Barrero, R. A. and Bellgard, M. I. (2009). Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Molecular Biology 10, 26. doi:10.1186/1471-2199-10-26.Google Scholar
Leost, M., Schultz, C., Link, A., Wu, Y. Z., Biernat, J., Mandelkow, E. M., Bibb, J. A., Snyder, G. L., Greengard, P., Zaharevitz, D. W., Gussio, R., Senderowicz, A. M., Sausville, E. A., Kunick, C. and Meijer, L. (2000). Paullones are potent inhibitors of glycogen synthase kinase-3b and cyclin-dependent kinase 5/p25. European Journal of Biochemistry 267, 59835994. doi: 10.1046/j.1432-1327.2000.01673.x.Google Scholar
Logullo, C., Da Silva Vaz, I. Jr., Sorgine, M. H. F., Paiva-Silva, G. O., Faria, F. S., Zingali, R., Rosa de Lima, M., Abreu, L., Oliveira, E. F., Alves, E. W.Masuda, H., Gonzales, J. C., Masuda, A. and Oliveira, P. L. (1998). Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology 116, 525532. doi:10.1017/S0031182098002698.CrossRefGoogle ScholarPubMed
Logullo, C., Witola, W. H., Andrade, C., Abreu, L., Gomes, J., Vaz, I. S. Jr.,, Imamura, S., Konnai, S., Ohashi, K. and Onuma, M. (2009). Expression and activity of glycogen synthase kinase during vitellogenesis and embryogenesis of Rhipicephalus (Boophilus) microplus. Veterinary Parasitology 161, 261269. doi: 10.1016/j.vetpar.2009.01.029.Google Scholar
Medina, M. and Castro, A. (2008). Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic. Current Opinion in Drug Discovery and Development 11, 533543.Google Scholar
Meijer, L., Flajolet, M. and Greengard, P. (2004). Pharmacological inhibitors of glycogen synthase kinase 3. Trends in Pharmacological Sciences 25, 471480. doi: 10.1016/j.tips.2004.07.006.Google Scholar
Naito, Y., Yamada, T., Matsumiya, T., Ui-Tei, K., Saigo, K. and Morishita, S. (2005). dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Research 33, 589591. doi:10.1093/nar/gki419.CrossRefGoogle ScholarPubMed
Nijhof, A. M., Taoufik, A., de la Fuente, J., Kocan, K. M., Vries, E. and Jongejan, F. (2007). Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. International Journal for Parasitology 37, 653662. doi: 10.1016/j.ijpara.2006.11.005.CrossRefGoogle ScholarPubMed
Nusse, R. (1997). A versatile transcriptional effector of wingless signaling. Cell 89, 321323. doi: 10.1016/S0092-8674(00)80210-X.Google Scholar
Oliveira, D. M. P. and Machado, E. A. (2006). Characterization of a tyrosine phosphatase activity in the oogenesis of Periplaneta americana. Archives of Insect Biochemistry and Physiology 63, 2435. doi: 10.1002/arch.20139.CrossRefGoogle ScholarPubMed
Parizi, L. F., Pohl, P. C., Masuda, A. and Da Silva Vaz, I. (2009). New approaches toward anti-Rhipicephalus (Boophilus) microplus tick vaccine. Revista Brasileira de Parasitologia Veterinaria 18, 17.CrossRefGoogle ScholarPubMed
Pohl, P. C., Sorgine, M., Leal, A. T., Logullo, C., Oliveira, P. L., Da Silva Vaz, I. and Masuda, A. (2008). An extraovarian aspartic protease accumulated in tick oocytes with vitellin-degradation activity. Comparative Biochemistry and Physiology 151, 392399. doi:10.1016/j.cbpb.2008.08.008.CrossRefGoogle ScholarPubMed
Sappington, T. W. and Raikhel, A. S. (1998). Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochemistry and Molecular Biology 28, 277300. doi: 10.1016/S0965-1748(97)00110-0.CrossRefGoogle ScholarPubMed
Selenica, M. L., Jersen, H. S., Larsen, A. K., Pedersen, M. L., Helboe, L., Leist, M. and Lotharius, J. (2007). Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. British Journal of Pharmacology 152, 959979. doi: 10.1038/sj.bjp.0707471.Google Scholar
Siegfried, E., Chou, T. and Perrimon, N. (1992). Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71, 11671179. doi:10.1016/S0092-8674(05)80065-0.Google Scholar
Song, J. L., Wong, J. L. and Wessel, G. M. (2006). Oogenesis: Single cell development and differentiation. Developmental Biology 300, 385405. doi:10.1016/j.ydbio.2006.07.041.Google Scholar
Toro-Ortiz, R. D., da Silva Vaz, I. Jr.,, Gonzáles, J. C. and Masuda, A. (1997). Monoclonal antibodies against Boophilus microplus and their effects on tick reproductive efficiency. Veterinary Parasitology 69, 297306. doi:10.1016/S0304-4017(96)01107-7.CrossRefGoogle ScholarPubMed
Tseng, A. S., Engel, F. B. and Keating, M. T. (2006). The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chemistry & Biology 13, 957963. doi: 10.1016/j.chembiol.2006.08.004.CrossRefGoogle ScholarPubMed
Welsh, G. I., Wilson, C. and Proud, C. G. (1996). GSK-3: a shaggy frog story. Trends in Cell Biology 6, 274279. doi:10.1016/0962-8924(96)10023-4.CrossRefGoogle ScholarPubMed