Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T23:07:37.421Z Has data issue: false hasContentIssue false

Ectoparasites of small-mammals: determinants of community structure in South American savannah

Published online by Cambridge University Press:  08 November 2016

J. SPONCHIADO*
Affiliation:
Programa de Pós-Graduação em Biodiversidade Animal, CCNE, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97110-970, Brazil Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97110-970, Brazil
G. L. MELO
Affiliation:
Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97110-970, Brazil Programa de Pós-Graduação em Ecologia e Conservação, CCBS, Universidade Federal do Mato Grosso do Sul, CP 549, Campo Grande, MS, 79070-900, Brazil
T. F. MARTINS
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Dr Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
F. S. KRAWCZAK
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Dr Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
F. C. JACINAVICIUS
Affiliation:
Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
M. B. LABRUNA
Affiliation:
Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Professor Dr Orlando Marques de Paiva 87, São Paulo, SP, 05508-270, Brazil
D. M. BARROS-BATTESTI
Affiliation:
Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
N. C. CÁCERES
Affiliation:
Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97110-970, Brazil
*
*Corresponding author: Programa de Pós-Graduação em Biodiversidade Animal, CCNE, Universidade Federal de Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97110-970, Brazil. E-mail: [email protected]

Summary

This study aimed to assess the contribution of hosts characteristics (rodents and marsupials) in the organization of ectoparasite communities present in woodland patches in western central Brazil. We verified the effect of host species, sex, body mass and vertical strata in addition to the role of seasonality on the ectoparasite composition, richness and abundance. The total sampling effort was 22 032 trap-nights equally distributed in 54 woodland patches. Variance partition and principal coordinate analysis were used to verify the existence of significant relationships between response variables and predictors. As expected, host species was the most important variable in ectoparasite community assembly. The composition, richness and abundance of mites and lice were highly influenced by host species, although higher for mites than for lice. Host body mass had a determining role on the richness and abundance of tick species. Vertical stratification and seasonality had weak influence, while the sex of the host had no influence on the organization of these communities. The results are closely related to the evolutionary characteristics of the species involved, as well as with local environmental characteristics of the study area.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, G. and Burt, A. (1991). The comparative biology of parasite species diversity: intestinal helminths of freshwater fishes. Journal of Animal Ecology 60, 10461063.Google Scholar
Bergallo, H. G. and Magnusson, W. E. (1999). Effects of climate and food availability on four rodent species in southeastern Brazil. Journal of Mammalogy 80, 472486.Google Scholar
Blanco, G. and Frías, O. (2001). Symbiotic feather mites synchronize dispersal and population growth with host sociality and migratory disposition. Ecography 24, 113120.Google Scholar
Borcard, D., Legendre, P. and Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 10451055.CrossRefGoogle Scholar
Bush, A. O., Fernández, J. C., Esch, G. W. and Seed, J. R. (2001). Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge.Google Scholar
Clayton, D. H. and Tompkins, D. M. (1994). Ectoparasite virulence is linked to mode of transmission. Proceedings of the Royal Society of London B 256, 211217.Google ScholarPubMed
Combes, C. (2001). Parasitism. The Ecology and Evolution of Intimate Interactions. University of Chicago Press, Chicago.Google Scholar
Cornwell, W. K. and Ackerly, D. D. (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79, 109126.CrossRefGoogle Scholar
Cruz, L. D., Fernandes, F. R. and Linhares, A. X. (2012). Similarities among ectoparasite fauna of sigmodontine rodents: phylogenetic and geographical influences. Parasitology 139, 17491756.Google Scholar
Guégan, J. F. and Hugueny, B. (1994). A nested parasite species subset pattern in tropical fish: host as major determinant of parasite infracommunity structure. Oecologia 100, 184189.Google Scholar
Harrison, A., Scantlebury, M. and Montgomery, W. I. (2010). Body mass and sex-biased parasitism in wood mice Apodemus sylvaticus . Oikos 119, 10991104.CrossRefGoogle Scholar
Khokhlova, I. S., Serobyan, V., Degen, A. A. and Krasnov, B. R. (2011). Discrimination of host sex by a haematophagous ectoparasite. Animal Behavior 81, 275281.Google Scholar
Kiffner, C., Stanko, M., Morand, S., Khokhlova, I. S., Shenbrot, G. I., Laudisoit, A., Leirs, H., Hawlena, H. and Krasnov, B. R. (2013). Sex-biased parasitism is not universal: evidence from rodent–flea associations from three biomes. Oecologia 173, 10091022.Google Scholar
Kiffner, C., Stanko, M., Morand, S., Khokhlova, I. S., Shenbrot, G. I., Laudisoit, A., Leirs, H., Hawlena, H. and Krasnov, B. R. (2014). Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitology Research 113, 2777–1788.Google Scholar
Klein, S. L. (2004). Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunology 26, 247264.Google Scholar
Korallo, N. P., Vinarski, M. V., Krasnov, B. R., Shenbrot, G. I., Mouillot, D. and Poulin, R. (2007). Are there general rules governing parasite diversity? Small mammalian hosts and gamasid mite assemblages. Diversity and Distributions 13, 353360.CrossRefGoogle Scholar
Kowalski, K., Bogdziewicz, M., Eichert, U. and Rychlik, L. (2015). Sex differences in flea infections among rodent hosts: is there a male bias? Parasitology Research 114, 337341.CrossRefGoogle Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Medvedev, S. and Vatschenok, V. (1998). Habitat Dependence of a Parasite-host relationship: flea (Siphonaptera) assemblages in two gerbil species of the Negev Desert. Journal of Medical Entomology 35, 303313.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Mouillot, D., Khokhlova, I. S. and Poulin, R. (2005). Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographic distance or faunal similarity? Journal of Biogeography 32, 633644.Google Scholar
Krasnov, B. R., Stanko, M., Miklisova, D. and Morand, S. (2006). Habitat variation in species composition of flea assemblages on small mammals in central Europe. Ecological Research 21, 460469.Google Scholar
Krasnov, B. R., Korallo-Vinarskaya, N. P., Vinarski, M. V., Shenbrot, G. I., Mouillot, D. and Poulin, R. (2008). Searching for general patterns in parasite ecology: host identity vs. environmental influence on gamasid mite assemblages in small mammals. Parasitology 135, 229242.Google Scholar
Krasnov, B. R., Stanko, M., Matthee, S., Laudisoit, A., Leirs, H., Khokhlova, I. S., Korallo-Vinarskaya, N. P., Vinarski, M. V. and Morand, S. (2011). Male hosts drive infracommunity structure of ectoparasites. Oecologia 166, 10991110.Google Scholar
Krasnov, B. R., Mouillot, D., Khokhlova, I. S., Shenbrot, G. I. and Poulin, R. (2012). Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology 139, 338347.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Stanko, M., Morand, S. and Mouillot, D. (2014). Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography 37, 001014.Google Scholar
Labruna, M. B., Terassini, F. A. and Camargo, L. M. A. (2009). Notes on population dynamics of Amblyomma ticks (Acari: Ixodidae) in Brazil. Journal of Parasitology 95, 10161018.Google Scholar
Lareschi, M. and Krasnov, B. R. (2010). Determinants of ectoparasite assemblage structure on rodent hosts from South American marshlands: the effect of host species, locality and season. Medical and Veterinary Entomology 24, 284292.Google Scholar
Legendre, P. and Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271280.Google Scholar
Linardi, P. M. and Krasnov, B. R. (2013). Patterns of diversity and abundance of fleas and mites in the Neotropics: host-related, parasite-related and environment-related factors. Medical and Veterinary Entomology 27, 4958.Google Scholar
Mace, G. M. and Harvey, P. H. (1983). Energetic constraints on home-range size. American Naturalist 121, 120132.Google Scholar
Marshall, A. G. (1981). The Ecology of Ectoparasite Insects. Academic Press, London.Google Scholar
May, R. M. and Anderson, R. M. (1990). Parasite-host coevolution. Parasitology 100, S89S101.Google Scholar
McNab, B. K. (1963). Bioenergetics and the determination of home range size. American Naturalist 97, 133140.CrossRefGoogle Scholar
Mendel, S. M., Vieira, M. V. and Cerqueira, R. (2008). Precipitation, litterfall, and the dynamics of density and biomass in the black-eared opossum, Didelphis aurita . Journal of Mammalogy 89, 159167.Google Scholar
Moore, S. L. and Wilson, K. (2002). Parasites as viability cost of sexual selection in natural population of mammals. Science 297, 20152018.Google Scholar
Morand, S. and Poulin, R. (1998). Density, body mass and parasite species richness of terrestrial mammals. Evolutionary Ecology 12, 717727.Google Scholar
Muñoz, G. and Cribb, T. H. (2005). Infracommunity structure of parasites of Hemigymnus melapterus (Pisces: Labridae) from Lizard Island, Australia: the importance of habitat and parasite body size. Journal of Parasitology 91, 3844.Google Scholar
Needham, G. R. and Teel, P. D. (1991). Off-host physiological ecology of ixodid ticks. Annual Review of Entomology 36, 659681.Google Scholar
Nunn, C. L., Altizer, S., Jones, K. E. and Sechrest, W. (2003). Comparative tests of parasites species richness in primates. American Naturalist 162, 597614.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. and Wagner, H. (2011). Vegan: community Ecology Package. R Package 2.0., 3.Google Scholar
Peres-Neto, P., Legendre, P., Dray, S. and Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 26142625.Google Scholar
Pinheiro, F., Diniz, I. R., Coelho, D. and Bandeira, M. P. S. (2002). Seasonal pattern of insect abundance in the Brazilian Cerrado. Austral Ecology 27, 132136.CrossRefGoogle Scholar
Poulin, R. (1998). Evolutionary Ecology of Parasites. From Individuals to Communities. Chapman and Hall, London.Google Scholar
Poulin, R. and Valtonen, E. T. (2002). The predictability of helminth community Structure in space: a comparison of fish populations from adjacent lakes. International Journal for Parasitology 30, 12351243.Google Scholar
R Development Core Team (2012). R: a language and environment for statistical computing. Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org Google Scholar
Ricklefs, R. E. and Schluter, D. (1993). Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago, Illinois, USA.Google Scholar
Roberts, M. L., Buchanan, K. L. and Evans, M. R. (2004). Testing the immunocompetence handicap hypothesis: a review of the evidence. Animal Behavior 68, 227239.Google Scholar
Sponchiado, J., Melo, G. L., Martins, T. F., Krawczak, F. S., Labruna, M. B. and Cáceres, N. C. (2015 a). Association patterns of ticks (Acari: Ixodida: Ixodidae, Argasidae) of small mammals in Cerrado fragments, western Brazil. Experimental and Applied Acarology 65, 389401.Google Scholar
Sponchiado, J., Melo, G. L., Landulfo, G. A., Jacinavicius, F. C., Barros-Battesti, D. M. and Cáceres, N. C. (2015 b). Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in Cerrado fragments, western Brazil. Experimental and Applied Acarology 66, 369381.Google Scholar
Szabó, M. P., Labruna, M. B., Garcia, M. V., Pinter, A., Castagnolli, K. C., Pacheco, R. C., Castro, M. B., Veronez, V. A., Magalhães, G. M., Vogliotti, A. and Duarte, J. M. (2009). Ecological aspects of the free-living ticks (Acari: Ixodidae) on animal trails within Atlantic rainforest in south-eastern Brazil. Annals of Tropical Medicine and Parasitology 103, 5772.Google Scholar
Szabó, M. P., Nieri-Bastos, F. A., Spolidorio, M. G., Martins, T. F., Barbieri, A. M. and Labruna, M. B. (2013). In vitro isolation from Amblyomma ovale (Acari: Ixodidae) and ecological aspects of the Atlantic rainforest Rickettsia, the causative agent of a novel spotted fever rickettsiosis in Brazil. Parasitology 140, 719728.Google Scholar
Vieira, E. M. and Camargo, N. F. (2012). Uso do espaço vertical por marsupiais brasileiros. In Marsupiais do Brasil: biologia, ecologia e conservação, 2 Edn (ed. Cáceres, N. C.), pp. 347363. UFMS, Campo Grande, Brazil.Google Scholar
Ward, S. A. (1992). Assessing functional explanations of host specificity. American Naturalist 139, 883891.Google Scholar
Supplementary material: File

Sponchiado supplementary material

Sponchiado supplementary material 1

Download Sponchiado supplementary material(File)
File 117.4 KB