Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T23:05:27.079Z Has data issue: false hasContentIssue false

Economic costs of protistan and metazoan parasites to global mariculture

Published online by Cambridge University Press:  02 December 2014

A. P. SHINN*
Affiliation:
Fish Vet Group Asia Limited, 99/386, Chaengwattana Building, Chaengwattana Road, Kwaeng Toongsonghong, Khet Laksi, Bangkok 10210, Thailand Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
J. PRATOOMYOT
Affiliation:
Institute of Marine Science, Burapha University, Chonburi, Thailand
J. E. BRON
Affiliation:
Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
G. PALADINI
Affiliation:
Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
E. E. BROOKER
Affiliation:
Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
A. J. BROOKER
Affiliation:
Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
*
* Corresponding author: Fish Vet Group Asia Limited, 99/386, Chaengwattana Building, Moo 2, Chaengwattana Road, Kwaeng Tungsonghong, Khet Laksi, Bangkok 10210, Thailand. E-mail: [email protected]

Summary

Parasites have a major impact on global finfish and shellfish aquaculture, having significant effects on farm production, sustainability and economic viability. Parasite infections and impacts can, according to pathogen and context, be considered to be either unpredictable/sporadic or predictable/regular. Although both types of infection may result in the loss of stock and incur costs associated with the control and management of infection, predictable infections can also lead to costs associated with prophylaxis and related activities. The estimation of the economic cost of a parasite event is frequently complicated by the complex interplay of numerous factors associated with a specific incident, which may range from direct production losses to downstream socio-economic impacts on livelihoods and satellite industries associated with the primary producer. In this study, we examine the world's major marine and brackish water aquaculture production industries and provide estimates of the potential economic costs attributable to a range of key parasite pathogens using 498 specific events for the purposes of illustration and estimation of costs. This study provides a baseline resource for risk assessment and the development of more robust biosecurity practices, which can in turn help mitigate against and/or minimise the potential impacts of parasite-mediated disease in aquaculture.

Type
Mariculture
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abela, M., Brinch-Iversen, J., Tanti, J. and Le Breton, A. (1996). Occurrence of a new histozoic microsporidian (Protozoa, Microspora) in cultured gilthead sea bream, Sparus aurata L. Bulletin of the European Association of Fish Pathologists 16, 196200.Google Scholar
Adams, M. B. and Nowak, B. F. (2001). Distribution and structure of lesions in the gills of Atlantic salmon, Salmo salar L., affected with amoebic gill disease. Journal of Fish Diseases 24, 535542.Google Scholar
Aiken, H. M., Hayward, C. J. and Nowak, B. F. (2006). An epizootic and its decline of a blood fluke Cardicola forsteri in farmed southern bluefin tuna Thunnus maccoyii . Aquaculture 254, 4045.CrossRefGoogle Scholar
Alarcon-Gonzalez, C. (1990). Identificacion de Pleistophora sp. (Microspora: Nosematidae) como agente infectante del camaron azul Penaeus stylirostris sometido a cultivo semi-intensivo en estanqueria rustica en Baja California Sur, Mexico. Revista Latinoamericana de Microbiologia 32, 193196.Google Scholar
Almeida, M., Berthe, F., Thébault, A. and Dinis, M. T. (1999). Whole clam culture as a quantitative diagnostic procedure of Perkinsus atlanticus (Apicomplexa, Perkinsea) in clams Ruditapes decussatus . Aquaculture 177, 325332.Google Scholar
Alvarez-Pellitero, P. and Sitjà-Bobadilla, A. (1993). Ceratomyxa spp. (Protozoa: Myxosporea) infections in wild and cultured sea bass (Dicentrarchus labrax) from the Spanish Mediterranean area. Journal of Fish Biology 42, 889901.Google Scholar
Alvarez-Pellitero, P. and Sitjà-Bobadilla, A. (2002). Cryptosporidium molnari n. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish species, Sparus aurata L. and Dicentrarchus labrax L. International Journal for Parasitology 32, 10071021.CrossRefGoogle Scholar
Alvial, A., Kibenge, F., Forster, J., Burgos, J. M., Ibarra, R. and St-Hilaire, S. (2012 a). The recovery of the Chilean salmon industry: the ISA crisis and its consequences and lessons. Global Aquaculture Alliance ISA Report. http://www.gaalliance.org/cmsAdmin/uploads/GAA_ISA-Report.pdf, Published 23rd February 2012.Google Scholar
Alvial, A., Kibenge, F., Forster, J., Burgos, J. M., Ibarra, R. and St-Hilaire, S. (2012 b). The recovery of the Chilean salmon industry: the ISA crisis and its consequences and lessons. Global Aquaculture Alliance ISA presentation. http://www.gaalliance.org/update/GOAL11/AdolfoAlvial.pdf Google Scholar
Andrews, J. D. (1967). Interaction of two diseases of oysters in natural waters. Proceedings of the National Shellfisheries Association 57, 3849.Google Scholar
Andrews, J. D. (1982). Epizootiology of late summer and fall infections of oysters by Haplosporidium nelsoni and comparison to the annual life cycle of Haplosporidium costalis, a typical haplosporidian. Journal of Shellfish Research 2, 1523.Google Scholar
Andrews, J. D. (1984). Epizootiology of diseases of oysters (Crassostrea virginica), and parasites of associated organisms in eastern North America. Helgoländer Meeresuntersuchunhgen 37, 149166.Google Scholar
Andrews, J. D. (1988). Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. American Fisheries Society Special Publication 18, 4763.Google Scholar
Antonio, D. B., Andree, K. B., Moore, J. D., Friedman, C. S. and Hedrick, R. P. (2000). Detection of Rickettsiales-like prokaryotes by in situ hybridization in black abalone, Haliotis cracherodii, with withering syndrome. Journal of Invertebrate Pathology 75, 180182.Google Scholar
Aravindan, N., Kalavati, C. and Aravindan, S. (2007). Protozoan parasites in commercially important shrimp species from northeast coast of Andhra Pradesh, India. Journal of Experimental Zoology 10, 920.Google Scholar
Arfara, S., Bozzetta, E., Prearo, M. and Ghittino, C. (1995). Cases of kudoasis in cultured juvenile gilthead sea bream. III Convegno Nationale Societa Italiana Di Pathologica Ittika 7, 1217.Google Scholar
Arthur, J. R. and Ogawa, K. (1996). A brief overview of disease problems in the culture of marine finfishes in east and Southeast Asia. In Aquaculture Health Management Strategies for Marine Fishes, Proceedings of a Workshop in Honolulu, Hawaii, October 9th–13th, 1995 (ed. Main, K. L. and Rosenfeld, C.), pp. 931. The Oceanic Institute, Hawaii.Google Scholar
Athanassopoulou, F. (1992). Ichthyophoniasis in sea bream, Sparus aurata (L.), and rainbow trout, Oncorhynchus mykiss (Walbaum), from Greece. Journal of Fish Diseases 15, 437441.Google Scholar
Athanassopoulou, F. (1998). A case report of Pleistophora sp. infection in cultured sea bream (Sparus aurata L.) in Greece. Bulletin of the European Association of Fish Pathologists 18, 1921.Google Scholar
Athanassopoulou, F., Bouboulis, D. and Martinsen, B. (2001 a). In vitro treatments of deltamethrin against the isopod parasite Anilocra physodes, a pathogen of seabass Dicentrarchus labrax L. Bulletin of the European Association of Fish Pathologists 21, 2629.Google Scholar
Athanassopoulou, F., Prapas, A. and Rodger, H. (1999). Diseases of Puntazzo puntazzo Cuvier in marine aquaculture systems in Greece. Journal of Fish Diseases 22, 215218.Google Scholar
Athanassopoulou, F., Ragias, V., Tavla, J., Christophilogannis, P. and Liberis, N. (2001 b). Preliminary trials on the efficacy and toxicity of ivermectin against Lernathropus kroyeri Van Beneden, 1851 in cultured sea bass Dicentrarchus labrax L. Aquaculture Research 32, 7779.Google Scholar
Azevedo, C. (1989). Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the claim Ruditapes decussatus from Portugal. Journal of Parasitology 75, 627635.Google Scholar
Balseiro, P., Montes, A., Ceschia, G., Gestal, C., Novoa, B. and Figueras, A. (2007). Molecular epizootiology of the European Marteilia spp., infecting mussels (Mytilus galloprovincialis and M. edulis) and oysters (Ostrea edulis): an update. Bulletin of the European Association of Fish Pathologists 27, 148156.Google Scholar
Barber, B. J., Ford, S. E. and Littlewood, D. T. J. (1991). A physiological comparison of resistant and susceptible oysters Crassostrea virginica (Gmelin) exposed to the endoparasite Haplosporidium nelsoni (Haskin, Stauber & Mackin). Journal of Experimental Marine Biology and Ecology 146, 101112.Google Scholar
Barker, S., Cribb, T. H., Bray, R. A. and Adlard, R. D. (1994). Host–parasite associations on a coral reef: pomacentrid fishes and digenean trematodes. International Journal for Parasitology 24, 643647.Google Scholar
Bassleer, G. (1983). Uronema marinum, a new and common parasite on tropical salt-water fishes. Freshwater and Marine Aquarium 6, 7879.Google Scholar
Baticados, M. C. and Quinitio, G. F. (1984). Occurrence and pathology of an Amyloodinium-like protozoan parasite on the gills of grey mullet, Mugil cephalus . Helgolander Meeresunters 37, 595601.Google Scholar
Becker, C. D. and Pauley, G. B. (1968 a). An ovarian parasite (Protista incertae sedis) from the Pacific oyster, Crassostrea gigas . Journal of Invertebrate Pathology 12, 425437.Google Scholar
Becker, C. D. and Pauley, G. B. (1968 b). A parasite from the ova of the Pacific oyster Crassostrea gigas . Proceedings of the National Shellfisheries Association 58, 11 (Abstract).Google Scholar
Bermingham, M. L. and Mulcahy, M. F. (2004). Environmental risk factors associated with amoebic gill disease in cultured salmon, Salmo salar L., smolts in Ireland. Journal of Fish Diseases 27, 555571.Google Scholar
Bian, B. Z. and Egusa, S. (1981). Histopathology of black gill disease caused by Fusurium solani (Martius) infection in the Kuruma prawn, Penaeus japonicus Bate. Journal of Fish Diseases 4, 195201.Google Scholar
Blackbourn, J., Bower, S. M. and Meyer, G. R. (1998). Perkinsus qugwadi sp. nov. (incertae sedis), a pathogenic protozoan parasite of Japanese scallops, Patinopecten yessoensis, cultured in British Columbia, Canada. Canadian Journal of Zoology 76, 942953.Google Scholar
Blateau, D., LeCoguic, Y., Mialhe, E. and Gizel, H. (1992). Mussel (Mytilus edulis) treatment against the red copepod Mytilicola intestinalis . Aquaculture 107, 165169.Google Scholar
Boesch, D. F., Field, J. C. and Scavia, D. (2000). The Potential Consequences of Climate Variability and Change on Coastal Areas and Marine Resources: Report of the Coastal Areas and Marine Resources Sector Team, U.S. National Assessment of the Potential Consequences of Climate Variability and Change, U.S. Global Change Research Program. NOAA Coastal Ocean Program Decision Analysis Series No. 21. NOAA Coastal Ocean Program, Silver Spring, MD.Google Scholar
Bondad-Reantaso, M. G., Kanchanakhan, S. and Chinabut, S. (2001). Review of grouper diseases and health management strategies for groupers and other marine fishes. In Report of a Workshop held in Bangkok, Thailand, 18th–20th May, October 2000 (ed. Bondad-Reantaso, M. G., Humphrey, J., Kanchanakhan, S. and Chinabut, S.), pp. 121146. Asia Pacific Economic Cooperation (APEC), Fish Health Section of the Asian Fisheries Society (FHS-AFS), Aquatic Animal Health Research Institute (AAHRI) and Network of Aquaculture Centres in Asia-Pacific (NACA), Bangkok, Thailand.Google Scholar
Bondad-Reantaso, M. G., McGladdery, S. E., Ladra, D. and Chongming, W. (2007). Pearl oyster health: experiences from the Philippines, China, the Persian Gulf and the Red Sea. In Pearl Oyster Health Management: a Manual (ed. Bondad-Reantaso, M. G., McGladdery, S. E. and Berthe, F. C. J.), pp. 111121. FAO Fisheries Technical Paper No. 503. Rome, FAO, 120 pp.Google Scholar
Bondad-Reantaso, M. G., Subasinghe, R. P., Arthur, J. R., Ogawa, K., Chinabut, S., Adlard, R., Tan, Z. and Shariff, M. (2005). Disease and health management in Asian aquaculture. Veterinary Parasitology 132, 249272.CrossRefGoogle ScholarPubMed
Bower, S. M. (1987 a). Labyrinthuloides haliotidis n. sp. (Protozoa: Labyrinthomorpha), a pathogenic parasite of small juvenile abalone in a British Columbia mariculture facility. Canadian Journal of Zoology 65, 19962007.CrossRefGoogle Scholar
Bower, S. M. (1987 b). Pathogenicity and host specificity of Labyrinthuloides haliotidis (Protozoa: Labyrinthomorpha), a parasite of juvenile abalone. Canadian Journal of Zoology 65, 20082012.Google Scholar
Bower, S. M. (1992). Diseases and parasites of mussels. In The Mussel Mytilus (ed. Gosling, E.), pp. 543563. Elsevier, Amsterdam.Google Scholar
Bower, S. M., Bate, K. and Meyer, G. R. (2005). Susceptibility of juvenile Crassostrea gigas and resistance of Panope abrupta to Mikrocytos mackini . Journal of Invertebrate Pathology 88, 9599.Google Scholar
Bower, S. M. and Blackbourn, J. (2003). Geoduck clam (Panopea abrupta): anatomy, histology, development, pathology, parasites and symbionts. Fisheries and Oceans, Canada Ottawa, Canada. http://www.pac.dfo-mpo.gc.ca/science/species-especes/shellfish-coquillages/geopath/intro-eng.html Google Scholar
Bower, S. M., Blackbourn, J. and Meyer, G. R. (1998). Distribution, prevalence, and pathogenicity of the protozoan Perkinsus qugwadi in Japanese scallops, Patinopecten yessoensis, cultured in British Columbia, Canada. Canadian Journal of Zoology 76, 954959.Google Scholar
Bower, S. M., Blackbourn, J., Meyer, G. R. and Nishimura, D. J. H. (1992). Diseases of cultured Japanese scallops (Patinopecten yessoensis) in British Columbia, Canada. Aquaculture 107, 201210.Google Scholar
Bower, S. M., McGladdery, S. E. and Price, I. M. (1994). Synopsis of infectious diseases and parasites of commercially exploited shellfish. Annual Review of Fish Diseases 4, 1199.Google Scholar
Bower, S. M. and Meyer, G. M. (2005). Synopsis of infectious diseases and parasites of commercially exploited shellfish: Labyrinthuloides haliotidis of abalone. http://www.dfo-mpo.gc.ca Google Scholar
Bower, C. E., Turner, D. T. and Biever, R. C. (1987). A standardized method of propagating the marine fish parasite, Amyloodinium ocellatum . Journal of Parasitology 73, 8588.Google Scholar
Bragoni, G., Romestand, B. and Trilles, J.-P. (1984). Parasitoses à cymothoadien chez le loup, Dicentrarchus labrax (Linnaeus, 1758) en élevage. I. Ecologie parasitaire dans le cas de l'Etang de Diana (Haute Corse) (Isopoda, Cymothoidae). Crustaceana 47, 4451.Google Scholar
Braid, B. A., Moore, J. D., Robbins, T. T., Hedrick, R. P., Tjeerdema, R. S. and Friedman, C. S. (2005). Health and survival of red abalone, Haliotis rufescens, under varying temperature, food supply, and exposure to the agent of withering syndrome. Journal of Invertebrate Pathology 89, 219231.Google Scholar
Branson, E., Riaza, A. and Alvarez-Pellitero, P. (1999). Myxosporean infection causing intestinal disease in farmed turbot, Scophthalmus maximus (L.) (Teleostei: Scophthalmidae). Journal of Fish Diseases 22, 395399.Google Scholar
Bravo, S. (2003). Sea lice in Chilean salmon farms. Bulletin of the European Association of Fish Pathologists 23, 197200.Google Scholar
Breber, P. (1985). On-growing of the carpet-shell clam (Tapes decussatus L.): two years’ experience in Venice Lagoon. Aquaculture 44, 5156.Google Scholar
Bristow, G. A. and Berland, B. (1991). The effect of long – term low level, Eubothrium sp. (Cestoda: Pseudophyllidea) infection on growth of farmed salmon (Salmo salar L.). Aquaculture 98, 325330.Google Scholar
Bron, J. E., Sommerville, C., Wootten, R. and Rae, G. H. (1993). Fallowing of marine Atlantic salmon farms as a method for the control of sea lice. Journal of Fish Diseases 16, 487493.Google Scholar
Bruno, D. W., Collins, C. M., Cunningham, C. O. and MacKenzie, K. (2001). Gyrodactyloides bychowskii (Monogenea: Gyrodactylidae) from sea-caged Atlantic salmon in Scotland: occurrence and ribosomal RNA sequence analysis. Diseases of Aquatic Organisms 45, 191196.Google Scholar
Buck, B. H., Thieltges, D. W., Walter, U., Nehls, G. and Rosenthal, H. (2005). Inshore–offshore comparison of parasite infestation in Mytilus edulis: implications for open ocean aquaculture. Journal of Applied Ichthyology 21, 107113.Google Scholar
Bunkley–Williams, L. and Williams, E. H. Jr. (2006). New records of parasites for culture Cobia, Rachycentron canadum (Perciformes: Rachycentridae) in Puerto Rico. Revista de Biologia Tropical 54, 17.Google Scholar
Burreson, E. M. (1996). Epizootiology of Perkinsus marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985. Journal of Shellfish Research 15, 1734.Google Scholar
Burreson, E. M. and Ragone Calvo, L. M. (1996). Epizootiology of Perkinsus marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985. Journal of Shellfish Research 15, 1734.Google Scholar
Burreson, E. M., Stokes, N. A. and Friedman, C. S. (2000). Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the Eastern oyster Crassostrea virginica . Journal of Aquatic Animal Health 12, 18.Google Scholar
Bustos, P. A., Young, N. J., Rozas, M. A., Bohle, H. M., Ildefonso, R. S., Morrison, R. N. and Nowak, B. F. (2011). Amoebic gill disease (AGD) in Atlantic salmon (Salmo salar) farmed in Chile. Aquaculture 310, 281288.Google Scholar
Cabral, P. (1989 a). Problems and perspectives of the pearl oyster aquaculture in French Polynesia. Workshop on Advances in Tropical Aquaculture, Tahiti, 20th February–4th March 1989. Aquacop. Infremer. Actes de Colloque 9, 5766.Google Scholar
Cabral, P. (1989 b). Some aspects of the abnormal mortalities of the pearl oysters, Pinctada margaritifera in the Tuamotu Archipelago, (French Polynesia). Advances in Tropical Aquaculture, Tahiti (French Polynesia), 20 Febuary–4 March 1989.Google Scholar
Cáceres Martínez, J., Álvarez Tinajero, C., Guerrero Rentería, Y. and González Avilés, J. G. (2000). Rickettsiales-like prokaryotes in cultured and natural populations of the red abalone Haliotis rufescens, blue abalone, Haliotis fulgens, the yellow abalone Haliotis corrugata from Baja California, Mexico. Journal of Shellfish Research 19, 503.Google Scholar
Caffara, M., Marcer, F., Florio, D., Quaglio, F. and Fioravanti, M. L. (2003). Heart infection due to Henneguya sp. (Myxozoa, Myxosporea) in gilthead sea bream (Sparus aurata) cultured in Italy. Bulletin of the European Association of Fish Pathologists 23, 108112.Google Scholar
Caffara, M., Quaglio, F., Marcer, F., Florio, D. and Fioravanti, M. L. (2010). Intestinal microsporidiosis in European seabass (Dicentrarchus labrax L.) farmed in Italy. Bulletin of the European Association of Fish Pathologists 30, 237240.Google Scholar
Callaway, R., Shinn, A. P., Grenfell, S. E., Bron, J. E., Burnwell, G., Cook, E. J., Crumlish, M., Culloty, S., Davidson, K., Ellis, R. P., Flynn, K. J., Fox, C., Green, D. M., Hays, G. C., Hughes, A. D., Johnston, E., Lowe, C. D., Lupatsch, I., Malham, S., Mendzil, A. F., Nickell, T., Pickerel, T., Rowley, A. F., Stanley, M. S., Tocher, D. R., Turnbull, J. F., Webb, G., Wootton, E. and Shields, R. J. (2012). Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems 22, 389421.Google Scholar
Calvo, L. R., Walker, J. G. and Burreson, E. M. (1998). Prevalence and distribution of QPX, Quahog Parasite Unknown, in hard clams Mercenaria mercenaria in Virginia, USA. Diseases of Aquatic Organisms 33, 209219.Google Scholar
Calvo-Ugarteburu, G. and McQuaid, C. D. (1998). Parasitism and introduced species: epidemiology of trematodes in the intertidal Perna perna and Mytilus galloprovincialis . Journal of Experimental Marine Biology and Ecology 220, 4765.Google Scholar
Canestri-Trotti, G., Baccarani, E. M., Paesanti, F. and Turolla, E. (2000). Monitoring of infections by protozoa of the genera Nematopsis, Perkinsus and Porospora in the smooth venus clam Callista chione from the North-Western Adriatic Sea (Italy). Diseases of Aquatic Organisms 42, 157161.CrossRefGoogle Scholar
Carballal, M. J., Iglesias, D., Santamarina, J., Ferro-Soto, B. and Villalba, A. (2001). Parasites and pathologic conditions of the cockle Cerastoderma edule populations of the Coast of Galicia (NW Spain). Journal of Invertebrate Pathology 78, 8797.Google Scholar
Carella, F., Aceto, S., Marrone, R., Maiolino, P. and De Vico, G. (2010). Marteilia refringens infection in cultured and natural beds of mussels (Mytilus galloprovincialis) along the Campanian coast (Tirrenian Sea, South of Italy). Bulletin of the European Association of Fish Pathologists 30, 189196.Google Scholar
Carr, W. H. (1996). Pathogenic organisms of penaeid shrimp in the Hawaiian Islands. Bishop Museum Occasional Papers 46, 1518.Google Scholar
Carvajal, J., Gonzalez, L. and George-Nascimento, M. (1998). Native sea lice (Copepoda: Caligidae) infestation of salmonids reared in netpen systems in southern Chile. Aquaculture 166, 241246.CrossRefGoogle Scholar
Chambon, C., Legeay, A., Durrieu, G., Gonzalez, P., Ciret, P. and Massabuau, J. C. (2007). Influence of the parasite worm Polydora sp. on the behaviour of the oyster Crassostrea gigas: a study of the respiratory impact and associated oxidative stress. Marine Biology 152, 329338.CrossRefGoogle Scholar
Chang, P. and Wang, Y. (2000). Studies on the caligusiasis and benedeniasis of marine cage cultured fish in Pingtung area of Taiwan. In Proceedings of the First International Symposium on Cage Aquaculture in Asia, 2000 (ed. Liao, I. C. and Lin, C. K.), p. 292. Asian Fisheries Society.Google Scholar
Charlier, J., Voort van der, M., Hogeveen, H. and Vercruysse, J. (2012). ParaCalc® – a novel tool to evaluate the economic importance of worm infections on the dairy farm. Veterinary Parasitology 184, 204211.Google Scholar
Chen, S. C., Kou, R. J., Wu, C. T., Wang, P. C. and Su, F. Z. (2001). Mass mortality with a Sphaerospora-like myxosporidean infestation in juvenile cobia, Rachycentron canadum (L.), marine cage cultured in Taiwan. Journal of Fish Diseases 24, 189195.Google Scholar
Chungti, T. and Zhenzu, X. (1979). The ‘black root’ disease of the razor clam in estuary of Jiulong River, Fujian. Acta Zoologica Sinica 4, 006.Google Scholar
Colorni, A. and Burgess, P. (1997). Cryptocaryon irritans Brown 1951, the cause of ‘white spot disease’ in marine fish: an update. Aquarium Sciences and Conservation 1, 217238.Google Scholar
Colquitt, S. E., Munday, B. L. and Daintith, M. (2001). Pathological findings in southern bluefin tuna, Thunnus maccoyii (Castelnau), infected with Cardicola forsteri (Cribb, Daintith and Munday, 2000) (Digenea: Sanguinicolidae), a blood fluke. Journal of Fish Diseases 24, 225229.Google Scholar
Cook, H. L. (1971). Fungi parasitic on shrimp. FAO Aquaculture Bulletin 3, 13.Google Scholar
Cook, T., Folli, M., Klinck, J., Ford, S. and Miller, J. (1998). The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuarine, Coastal and Shelf Science 46, 587597.Google Scholar
Costello, M. J. (2009). The global economic cost of sea lice to the salmonid farming industry. Journal of Fish Diseases 32, 115118.Google Scholar
Crespo, S., Grau, A. and Padrós, F. (1992). Sanguinicoliasis in the cultured amberjack Seriola dumerili Risso, from the Spanish Mediterranean area. Bulletin of the European Association of Fish Pathologists 12, 157159.Google Scholar
Crespo, S., Grau, A. and Padrós, F. (1994). The intensive culture of 0-group amberjack in the western Mediterranean is compromised by disease problems. Aquaculture International 2, 262265.CrossRefGoogle Scholar
Crosby, M. P. and Roberts, C. F. (1990). Seasonal infection intensity cycle of the parasite Perkinsus marinus (and an absence of Haplosporidium spp.) in oysters from a South Carolina salt marsh. Diseases of Aquatic Organisms 9, 149155.Google Scholar
Cruz-Lacierda, E. R., Maeni, Y., Pineda, A. J. T. and Matey, V. E. (2004). Mass mortality of hatchery-reared milkfish (Chanos chanos) and mangrove red snapper (Lutjanus argentimaculatus) caused by Amyloodinium ocellatum (Dinoflagellida). Aquaculture 236, 8594.Google Scholar
Cruz-Lacierda, E. R., Pagador, G. E., Yamamoto, A. and Nagasawa, K. (2011). Parasitic caligid copepods of farmed marine fishes in the Philippines. In Diseases in Asian Aquaculture VII (ed. Bondad-Reantaso, M. G., Jones, J. B., Corsin, F. and Aoki, T.), pp. 5362. Fish Health Section, Asian Fisheries Society, Selangor, Malaysia, 385 pp.Google Scholar
Cruz-Lacierda, E. R., Toledo, J. D., Tan-Fermin, J. D. and Burreson, E. M. (2000). Marine leech (Zeylanicobdella arugamensis) infestation in cultured orange-spotted grouper, Epinephelus coioides . Aquaculture 185, 191196.Google Scholar
Culurgioni, J., D'Amico, V., De Murtas, R., Trotti, G. C. and Figus, V. (2006). Parasitological monitoring of commercial native bivalves from St. Gilla lagoon (Sardinia, South Western Mediterranean). Ittiopatologia 3, 243252.Google Scholar
Dahl, S. F., Thiel, J. and Allam, B. (2010). Field performance and QPX disease progress in cultured and wild-type strains of Mercenaria mercenaria in New York waters. Journal of Shellfish Research 29, 8390.Google Scholar
DaRos, L. and Canzonier, W. J. (1985). Perkinsus, a protistan threat to bivalve culture in the Mediterranean basin. Bulletin of the European Association of Fish Pathologists 5, 2325.Google Scholar
Davey, J. T. (1989). Mytilicola intestinalis (Copepoda: Cyclopoida): a ten year survey of infested mussels in a Cornish estuary, 1978–1988. Journal of the Marine Biological Association of the UK 69, 823836.CrossRefGoogle Scholar
Davey, J. T. and Gee, J. M. (1988). Mytilicola intestinalis, a copepod parasite of blue mussels. Diseases in marine bivalve molluscs. American Fisheries Society Special Publication 18, 6473.Google Scholar
Dégremont, L., Bédier, E. and Boudry, P. (2010). Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). II. Response to selection for survival and its influence on growth and yield. Aquaculture 299, 2129.Google Scholar
Dethlefsen, V. (1985). Mytilicola intestinalis parasitism. In Fiches d'Identification des Maladies et Parasites des Poissons, Crustacés et Mollusques, No. 24 (ed. Sindermann, C. J.), pp. 14. ICES, Copenhagen.Google Scholar
Deveney, M. R., Bayly, T. J., Johnston, C. J. and Nowak, B. F. (2005). A parasite survey of farmed southern bluefin tuna, Thunnus maccoyii (Castelnau). Journal of Fish Diseases 28, 279284.Google Scholar
Deveney, M. R., Chisholm, L. A. and Whittington, I. D. (2001). First published record of the pathogenic monogenean parasite Neobenedenia melleni (Capsalidae) from Australia. Diseases of Aquatic Organisms 46, 7982.Google Scholar
Dezfuli, B. S., Giari, L., Simoni, E., Menegatti, M., Shinn, A. P. and Manera, M. (2007). Gill histopathology of cultured Dicentrarchus labrax (L.) infected with Diplectanum aequans (Wagener, 1857) Diesing, 1958 (Diplectanidae: Monogenea). Parasitology Research 100, 707713.Google Scholar
Diamant, A. (1992). A new pathogenic histozoic Myxidium (Myxosporea) in cultured gilt-head sea bream Sparus aurata L. Bulletin of the European Association of Fish Pathologists 12, 6466.Google Scholar
Diamant, A. (1998 a). Red drum Sciaenops ocellatus (Sciaenidae), a recent introduction to Mediterranean mariculture, is susceptible to Myxidium leei (Myxosporea). Aquaculture 162, 3339.Google Scholar
Diamant, A. (1998 b). Brooklynella hostilis (Hartmannulidae), a pathogenic ciliate from the gills of maricultured sea bream. Bulletin of the European Association of Fish Pathologists 18, 3336.Google Scholar
Diggles, B. and Hutson, K. S. (2005). Diseases of kingfish (Seriola lalandi) in Australasia. Aquaculture Health International 3, 1214.Google Scholar
Diggles, B. K., Hine, P. M., Handley, S. and Boustead, N. C. (2002). A handbook of diseases of importance to aquaculture in New Zealand. NIWA Science and Technology Series No. 49.Google Scholar
Diggles, B. K. and Oliver, M. (2005). Diseases of cultured paua (Haliotis iris) in New Zealand. In Diseases in Asian Aquaculture V (ed. Walker, P., Lester, R. and Bondad-Reantaso, M. G.), pp. 275287. Fish Health Section, Asian Fisheries Society, Manila.Google Scholar
Dong, J., Jiang, L.-X., Tan, K.-F., Liu, H.-Y., Purcell, J. E., Li, P.-J. and Ye, C.-C. (2009). Stock enhancement of the edible jellyfish (Rhopilema esculentum Kishinouye) in Liaodong Bay, China: a review. Hydrobiologia 616, 113118.Google Scholar
Douglas-Helders, G. M., Tan, C., Carson, J. and Nowak, B. F. (2003). Effects of copper-based antifouling treatment on the presence of Neoparamoeba pemaquidensis Page, 1987 on nets and gills of reared Atlantic salmon (Salmo salar). Aquaculture 221, 1322.Google Scholar
Dragesco, A., Dragesco, J., Coste, F., Gasc, C., Romestand, B., Raymond, J. C. and Bouix, G. (1995). Philasterides dicentrarchi, n. sp. (Ciliophora, Scuticociliata), a histophagous opportunistic parasite of Dicentrarchus labrax (Linnaeus, 1758), a reared marine fish. European Journal of Protistology 31, 327340.Google Scholar
Dungan, C. F., Carnegie, R. B., Hill, K. M., McCollough, C. B., Laramore, S. E., Kelly, C. J., Stokes, N. A. and Scarpa, J. (2012). Diseases of oysters Crassostrea ariakensis and C. virginica reared in ambient waters from the Choptank River, Maryland and the Indian River Lagoon, Florida. Diseases of Aquatic Organisms 101, 173183.Google Scholar
Dyková, I. and Figueras, A. (1994). Histopathological changes in turbot Scophthalmus maximus due to a histophagous ciliate. Diseases of Aquatic Organisms 18, 59.Google Scholar
Dyková, I., Figueras, A., Novoa, B. and Casal, J. F. (1998). Paramoeba sp., an agent of amoebic gill disease of turbot, Scophthalmus maximus . Diseases of Aquatic Organisms 33, 137141.Google Scholar
Dyková, I., Lom, J. and Fajer, E. (1988). A new haplosporean infecting the hepatopancreas in the penaeid shrimp, Penaeus vannamei . Journal of Fish Diseases 11, 1522.Google Scholar
Egusa, S. (1983). Disease problems in Japanese yellowtail, Seriola quinqueradiata, culture: a review. Rapports et Procès-verbaux des Réunion Conseil International pour l'Exploration de la Mer 182, 1018.Google Scholar
Egusa, S. (1985). Myxobolus buri sp. n. (Myxosporea: Bivalvulida) parasitic in the brain of Seriola quinqueradiata Temminch et Schlegel. Fish Pathology 19, 239244.Google Scholar
Egusa, S., Hatai, K. and Fujimaki, Y. (1988). Notes on Microsporidium species, the etiological agent of ‘Beko’ disease in Red Sea bream juveniles, Pagrus major . Fish Pathology 23, 263267.Google Scholar
Egusa, S. and Nakajima, K. (1978). Kudoasis of cultured yellowtail. Fish Pathology 13, 17.Google Scholar
Egusa, S. and Nakajima, K. (1980). Kudoa amamiensis n. sp. (Myxosporea: Multivalvulida) found in cultured yellowtails and wild damselfishes from Amami-Ohshima and Okinawa, Japan. Bulletin of the Japanese Society of Scientific Fisheries 46, 11931198.Google Scholar
Egusa, S. and Shiomitsu, T. (1983). Two new species of the genus Kudoa (Myxosporea: Multivalvulida) from marine cultured fishes in Japan. Fish Pathology 18, 163171.Google Scholar
Ellis, A. E. and Wootten, R. (1978). Costiasis of Atlantic salmon, Salmo salar L. smolts in seawater. Journal of Fish Diseases 1, 389393.Google Scholar
Elston, R. A. (1980). Ultrastructural aspects of a serious disease of hatchery reared larval oysters, Crassostrea gigas Thtinberg. Journal of Fish Diseases 3, 110.Google Scholar
Elston, R. A. (1993). Infectious diseases of the Pacific oyster, Crassostrea gigas . Annual Review of Fish Diseases 3, 259276.Google Scholar
Elston, R. A., Kent, M. L. and Harrell, L. H. (1987). An intranuclear microsporidium associated with acute anemia in the chinook salmon. Journal of Protozoology 34, 274277.Google Scholar
Ernst, I., Whittington, I., Corneillie, S. and Talbot, C. (2002). Monogenean parasites in sea-cage aquaculture. Austasia Aquaculture February/March, 4648.Google Scholar
Eydal, M., Kristmundsson, A. and Bambir, S. H. (2010). Pseudobranchial X-cell pseudotumors in young wild and farmed Atlantic cod Gadus morhua in Iceland. Diseases of Aquatic Organisms 91, 8388.Google Scholar
Fajer-Ávila, E. J., Abdo-de la Parra, I., Aguilar-Zarate, G., Contreras-Arce, R., Zaldivar-Ramirez, J. and Betancourt-Lozano, M. (2003). Toxicity of formalin to bullseye puffer fish (Sphoeroides annulatus Jenyns) and its effectiveness to control ectoparasites. Aquaculture 223, 4150.Google Scholar
Fajer-Ávila, E. J., Martínez-Rodríguez, I., Abdo de la Parra, M. I., Álvarez-Lajonchere, L. and Betancourt-Lozano, M. (2008). Effectiveness of freshwater treatment against Lepeophtheirus simplex (Copepoda: Caligidae) and Neobenedenia sp. (Monogenea: Capsalidae), skin parasites of bullseye puffer fish, Sphoeroides annulatus reared in tanks. Aquaculture 284, 277280.Google Scholar
FAO (2014 a). Cultured aquatic species information program: Dicentrarchus labrax (Linnaeus, 1758). http://www.fao.org/fishery/culturedspecies/Dicentrarchus_labrax/en Google Scholar
FAO (2014 b). Cultured aquatic species information program: Psetta maxima (Linnaeus, 1758). http://www.fao.org/fishery/culturedspecies/Psetta_maxima/en Google Scholar
FAO (2014 c). Cultured aquatic species information program: Rachycentron canadum (Linnaeus, 1766). http://www.fao.org/fishery/culturedspecies/Rachycentron_canadum/en Google Scholar
FAO (2014 d). Cultured aquatic species information program: Sparus aurata (Linnaeus, 1758). http://www.fao.org/fishery/culturedspecies/Sparus_aurata/en Google Scholar
FAO (2014 e). Cultured aquatic species information program: Scylla serrata (Forsskål, 1755). http://www.fao.org/fishery/culturedspecies/Scylla_serrata/en Google Scholar
FAO FishStatJ (2013). Fisheries and Aquaculture Department, Statistics and Information Service FishStatJ: Universal software for fishery statistical time series. Copyright 2011.Version 2.1.0. (March, 2013). http://www.fao.org/fishery/statistics/software/fishstat/en Google Scholar
FAO Globefish (2013). Salmon – June 2013. http://www.globefish.org/salmon-june-2013.html Google Scholar
Farley, C. A., Wolf, P. H. and Elston, R. A. (1988). A long-term study of ‘microcell’ disease in oysters with a description of a new genus, Mikrocytos (g.n.) and two new species Mikrocytos mackini (sp. n.) and Mikrocytos roughleyi (sp.n.). US National Marine Fish Service Bulletin 86, 581593.Google Scholar
Feehan, C., Johnson-MacKinnon, J., Scheibling, R. E., Lauzon-Guay, J. S. and Simpson, A. G. B. (2013). Validating the identity of Paramoeba invadens, the causative agent of recurrent mass mortality of sea urchins in Nova Scotia, Canada. Diseases of Aquatic Organisms 103, 209227.Google Scholar
Fenner, R. M. (1998). Cyanide collection: deadly truths for reefs, fishermen, and aquarists. The Conscientious Marine Aquarist, pp. 165173. Microcosm, Ltd., Shelburne, VT.Google Scholar
Ferguson, H. W., Hicks, B. D., Lynn, D. H., Ostland, V. E. and Bailey, J. (1987). Cranial ulceration in Atlantic salmon Salmo salar associated with Tetrahymena sp. Diseases of Aquatic Organisms 2, 191195.Google Scholar
Figueras, A., Novoa, A., Santarem, B., Mártinez, E., Alvarez, J. M., Toranzo, A. E. and Dyková, I. (1992). Tetramicra brevifilum, a potential threat to farmed turbot Scophthalmus maximus . Diseases of Aquatic Organisms 14, 127135.Google Scholar
Figueras, A. J., Jardon, C. F. and Caldas, J. R. (1991). Diseases and parasites of rafter mussels (Mytilus galloprovincialis Lmk): preliminary results. Aquaculture 99, 1733.Google Scholar
Findlay, V. L., Helders, M., Munday, B. L. and Gurney, R. (1995). Demonstration of resistance to reinfection with Paramoeba sp. by Atlantic salmon, Salmo salar L. Journal of Fish Diseases 18, 639642.Google Scholar
Ford, S. E. (1985). Effects of salinity on survival of the MSX parasite Haplosporidium nelsoni (Haskin, Stauber and Mackin) in oysters. Journal of Shellfish Research 5, 8590.Google Scholar
Ford, S. E. (2011). SSO Disease of oysters caused by Haplosporidium costale . ICES Identification Leaflets for Diseases and Parasites of Fish and Shellfish, Leaflet No. 39. International Council for the Exploration of the Seas, Copenhagen, Denmark.Google Scholar
Ford, S. E. and Haskin, H. H. (1982). History and epizootiology of Haplosporidium nelsoni (MSX), an oyster pathogen in Delaware Bay, 1957–1980. Journal of Invertebrate Pathology 40, 118141.Google Scholar
Ford, S. E. and Haskin, H. H. (1987). Infection and mortality patterns in strains of oysters Crassostrea virginica selected for resistance to the parasite Haplosporidium nelsoni (MSX). Journal of Protozoology 73, 368376.Google Scholar
Ford, S. E., Kraeuter, J. N., Barber, R. D. and Mathis, G. (2002). Aquaculture-associated factors in QPX disease of hard clams: density and seed source. Aquaculture 208, 2338.Google Scholar
Foster, C. and Percival, S. (1988). Paramoebic gill disease. Occurrence of Paramoeba in Tasmania. Saltas Aquanote No. 15, May Salmon Enterprises of Tasmania Pty Ltd, Dover, Tasmania, Australia.Google Scholar
Franco-Sierra, A., Sitjà-Bobadilla, A. and Alvarez-Pellitero, P. (1997). Ichthyophonus infections in cultured marine fish from Spain. Journal of Fish Biology 51, 830839.Google Scholar
Frasca, S., Poynton, S. L., West, A. B. and Van Kruiningen, H. J. (1998). Epizootiology, pathology, and ultrastructure of the myxosporean associated with parasitic encephalitis of farmed Atlantic salmon Salmo salar in Ireland. Diseases of Aquatic Organisms 32, 211225.Google Scholar
Frasca, S. Jr., Linfert, D. R., Tsongalis, G. J., Gorton, T. S., Garmendia, A. E., Hedrick, R. P., West, A. B. and Van Kruiningen, H. J. (1999). Molecular characterization of the myxosporean associated with parasitic encephalitis of farmed caged Atlantic salmon Salmo salar in Ireland. Diseases of Aquatic Organisms 35, 221233.CrossRefGoogle Scholar
Frenzl, B., Migaud, H., Fjelldal, P. G., Shinn, A. P., Taylor, J. F., Richards, R. H., Glover, K. A., Cockerill, D. and Bron, J. E. (2013). Triploid and diploid Atlantic salmon show similar susceptibility to infection with salmon lice Lepeophtheirus salmonis . Pest Management Science 70, 982988.Google Scholar
Frenzl, B., Stien, L. H., Cockerill, D., Oppedal, F., Richards, R. H., Shinn, A. P., Bron, J. E. and Migaud, H. (2014). Manipulation of farmed Atlantic salmon swimming behaviour through the adjustment of lighting and feeding regimes as a tool for salmon lice control. Aquaculture 24–425, 183188.Google Scholar
Friedman, C. S., Andree, K. B., Beauchamp, K. A., Moore, J. D., Robbins, T. T., Shields, J. D. and Hedrick, R. P. (2000). Candidatus Xenohaliotis californiensis’, a newly described pathogen of abalone, Haliotis spp., along the west coast of North America. International Journal of Systematic and Evolutionary Microbiology 50, 847855.Google Scholar
Friedman, C. S., Cloney, D. F., Manzer, D. and Hendrick, R. P. (1991). Haplosporidosis of the Pacific oyster, Crassostrea gigas . Journal of Invertebrate Pathology 58, 367372.Google Scholar
Friedman, C. S., Thomson, M., Chun, C., Haaker, P. L. and Hedrick, R. P. (1997). Withering syndrome of the black abalone Haliotis cracherodii (Leach): water temperature, food availability, and parasites as possible causes. Journal of Shellfish Research 16, 403411.Google Scholar
Fujita, S., Yoda, M. and Ugajin, I. (1968). Control of an endoparasitic copepod, Caligus spinosus Yamaguti, on the cultured adult yellowtail. Fish Pathology 2, 122127 [In Japanese].Google Scholar
Gabor, L. J., Srivastava, M., Titmarsh, J., Dennis, M., Gabor, M. and Landos, M. (2011). Cryptosporidiosis in intensively reared barramundi (Lates calcarifer). Journal of Veterinary Diagnostic Investigation 23, 383386.Google Scholar
García García, J. and García García, B. (2010). Econometric model of viability/profitability of ongrowing sharp snout sea bream (Diplodus puntazzo) in sea cages. Aquaculture International 18, 955971.Google Scholar
García-Ortega, A., Hernández, C., Abdo-delaParra, I. and González-Rodríguez, B. (2002). Advances in the nutrition and feeding of the bullseye puffer Sphoeroides annulatus . In Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola, 3 al 6 de Septiembre del 2002 (ed. Cruz-Suárez, L. E., Ricque-Marie, D., Tapia-Salazar, M., Gaxiola-Cortés, M. G. and Simoes, N.), pp. 187196. Cancún, Quintana Roo, México.Google Scholar
Ghittino, P. S., Bignami, I. S., Annibali, A. and Boni, L. (1980). First record of serious oodiniasis in seabass (Dicentrarchus labrax) intensively reared in brackish water. Rivista Italiana Piscicoltura e Ittiopatologica 15, 122127.Google Scholar
Gibson-Kueh, S., Thuy, N. T. N., Elliot, A., Jones, J. B., Nicholls, P. K. and Thompson, R. C. A. (2011). An intestinal Eimeria infection in juvenile Asian seabass (Lates calcarifer) cultured in Vietnam – a first report. Veterinary Parasitology 181, 106112.Google Scholar
Goggin, C. L. and Lester, R. J. G. (1995). Perkinsus, a protistan parasite of abalone in Australia: a review. Marine and Freshwater Research 46, 639646.Google Scholar
Golomazou, E., Athanassopoulou, F., Vagianou, S., Sabatakou, O., Tsadilas, H., Rigos, G. and Kokkokiris, L. (2006). Diseases of White Sea bream (Diplodus sargus L.) reared in experimental and commercial conditions in Greece. Turkish Journal of Veterinary and Animal Sciences 30, 389396.Google Scholar
Graczyk, T., Conn, D., Marcogliese, D., Graczyk, H. and De Lafontaine, Y. (2003). Accumulation of human waterborne parasites by zebra mussels (Dreissena polymorpha) and Asian freshwater clams (Corbicula fluminea). Parasitology Research 89, 107112.Google Scholar
Grant, A. N. and Treasurer, J. W. (1993). The effects of fallowing on caligid infestations on farmed Atlantic salmon (Salmo salar L.) in Scotland. In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. A. and Defaye, D.), pp. 255260. Ellis Horwood Ltd., Chichester, UK.Google Scholar
Grau, A., Crespo, S., Pastor, E., González, P. and Carbonell, E. (2003). High infection by Zeuxapta seriolae (Monogenea: Heteraxinidae) associated with mass mortalities of amberjack Seriola dumerili Risso reared in sea cages in the Balearic Islands (Western Mediterranean). Bulletin of the European Association of Fish Pathologists 23, 139142.Google Scholar
Gray, A. P., Lucas, I. A. N., Seed, R., and Richardson, C. A. (1999). Mytilus edulis chilensis infested with Coccomyxa parasitica (Chlorococcales, Coccomyxaceae). Journal of Molluscan Studies 65, 289294.Google Scholar
Guo, F. C. and Woo, P. T. K. (2004). Experimental infections of Atlantic salmon Salmo salar with Spironucleus barkhanus . Diseases of Aquatic Organisms 61, 5966.Google Scholar
Haaker, P. L., Parker, D. O., Togstad, H., Richards, D. V., Davis, G. E. and Friedman, C. S. (1992). Mass mortality and withering syndrome in black abalone, Haliotis cracherodii, in California. In Abalone of the World: Biology, Fisheries and Culture. Proceedings of the First International Symposium on Abalone (ed. Shepherd, S. A., Tegner, M. J. and Gusman del Proo, S. A.), pp. 214224. Cambridge University Press, Cambridge.Google Scholar
Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D'Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R. and Watson, R. (2008). A global map of human impact on marine ecosystems. Science 319, 948952.Google Scholar
Han, H.-S., Nam, B.-H., Kang, J.-H., Kim, Y.-K., Jee, Y.-J., Hur, Y.-B. and Yoon, M.-G. (2012). Genetic variation in wild and cultured populations of the sea squirt Halocynthia roretzi inferred from microsatellite DNA analysis. Fisheries and Aquatic Sciences 15, 151155.Google Scholar
Harada, T. (1966). Studies on propagation of yellowtail (Seriola quinqueradiata T. & S.). Bulletin of the Fisheries Laboratory of Kinki University 1, 1275 [in Japanese].Google Scholar
Harrell, L. W., Elston, R. A., Scott, T. M. and Wilkinson, M. T. (1986). A significant new systemic disease of net-pen reared chinook salmon Oncorhynchus tshawytscha brood stock. Aquaculture 55, 249262.Google Scholar
Harrell, L. W. and Scott, T. M. (1985). Kudoa thyrsites (Gilchrist) (Myxosporea: Multivalvulida) in Atlantic salmon (Salmo salar L.). Journal of Fish Diseases 8, 329332.Google Scholar
Haskin, H. H. and Ford, S. E. (1982). Haplosporidium nelsoni on Delaware Bay seed oyster beds: a host–parasite relationship along a salinity gradient. Journal of Invertebrate Pathology 40, 388405.Google Scholar
Haskin, H. H., Stauber, L. A. and Mackin, J. A. (1966). Minchinia nelsoni n. sp. (Haplosporida, Haplosporidiidae): causative agent of the Delaware Bay oyster spizootic. Science (NY) 153, 14141416.Google Scholar
Hatai, K., Roza, D. and Nakamura, T. (2000). Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience 41, 565572.Google Scholar
Hauck, A. K. (1984). A mortality and associated tissue reactions of chinook salmon, Oncorhynchus tshwytscha (Walbaum), caused by the microsporidan Loma sp. Journal of Fish Diseases 7, 217229.Google Scholar
Hayward, C. J., Aiken, H. M. and Nowak, B. F. (2008). An epizootic of Caligus chiastos on farmed southern bluefin tuna Thunnus maccoyii off South Australia. Diseases of Aquatic Organisms 79, 5763.Google Scholar
Hayward, C. J., Bott, N. J., Itoh, N., Iwashita, M., Okihiro, M. and Nowak, B. F. (2007). Three species of parasites emerging on the gills of mulloway, Argyrosomus japonicus (Temminck and Schlegel, 1843), cultured in Australia. Aquaculture 265, 2740.Google Scholar
Hayward, C. J., Bott, N. J. and Nowak, B. F. (2009). Seasonal epizootics of sea lice, Caligus spp., on southern bluefin, Thunnus maccoyii (Castelnau), in a long-term farming trial. Journal of Fish Diseases 32, 101106.Google Scholar
Hayward, C. J., Ellis, D., Foote, D., Wilkinson, R. J., Crosbie, P. B. B., Bott, N. J. and Nowak, B. F. (2010). Concurrent epizootic hyperinfections of sea lice (predominantly Caligus chiastos) and blood flukes (Cardicola forsteri) in ranched Southern bluefin tuna. Veterinary Parasitology 173, 107115.Google Scholar
Hedrick, R. P., Groff, J. M. and Baxa, D. V. (1991). Experimental infections with Enterocytozoon salmonis Chilmonczyk, Cox, Hedrick (Microsporea): an intranuclear microsporidium from chinook salmon Oncorhynchus tshawytscha . Diseases of Aquatic Organisms 10, 103108.Google Scholar
Hégaret, H., Smolowitz, R. M., Sunila, I., Shumway, S. E., Alix, J., Dixon, M. and Wikfors, G. H. (2010). Combined effects of a parasite, QPX, and the harmful-alga, Prorocentrum minimum on northern quahogs, Mercenaria mercenaria . Marine Environmental Research 69, 337344.Google Scholar
Hervio, D., Bower, S. M. and Meyer, G. R. (1996). Detection, isolation and experimental transmission of Mikrocytos mackini, a microcell parasite of Pacific oysters Crassostrea gigas (Thunberg). Journal of Invertebrate Pathology 67, 7279.Google Scholar
Hine, P. M., Bower, S. M., Meyer, G. R., Cochennec-Laureau, N. and Berthe, F. C. J. (2001). Ultrastructure of Mikrocytos mackini, the cause of Denman Island disease in oysters Crassostrea spp. and Ostrea spp. in British Columbia, Canada. Diseases of Aquatic Organisms 45, 215227.Google Scholar
Hine, P. M. and Thorne, T. (2000). A survey of some parasites and diseases of several species of bivalve mollusc in northern western Australia. Diseases of Aquatic Organisms 40, 6778.Google Scholar
Hine, P. M., Wakefield, S., Diggles, B. K., Webb, V. L. and Maas, E. W. (2002). Ultrastructure of a haplosporidian containing Rickettsiae, associated with mortalities among cultured paua Haliotis iris . Diseases of Aquatic Organisms 49, 207219.Google Scholar
Ho, J. (1980). Origin and dispersal of Mytilus edulis in Japan deduced from its present status of copepod parasitism. Publications of the Seto Marine Biological Laboratory 25, 293313.Google Scholar
Ho, J.-S., Kim, I.-H. and Cruz-Lacierda, E. R. (2004). Sea lice (Copepoda, Caligidae) parasitic on marine cultured and wild fishes of the Philippines. Journal of the Fisheries Society of Taiwan 31, 235249.Google Scholar
Ho, J. S. and Lin, C. L. (2001). Parapetalus occidentalis Wilson (Copepoda, Caligidae) parasitic on both wild and farmed cobia (Rachycentron canadum) in Taiwan. Journal of the Fisheries Society of Taiwan 28, 305316.Google Scholar
Ho, J. S. and Nagasawa, K. (2001). Why infestation by Lepeophtheirus salmonis (Copepoda: Caligidae) is not a problem in the coho salmon farming industry in Japan. Journal of Crustacean Biology 21, 954960.Google Scholar
Ho, J. S. and Zheng, G. X. (1994). Ostrincola koe (Copepoda, Myicolidae) and mass mortality of cultured hard clam (Meretrix meretrix) in China. Hydrobiologia 284, 169173.Google Scholar
Hoffman, G. L. (1984). Two fish pathogens, Parvicapsula sp. and Mitraspora cyprini (Myxosporea) new to North America. Symposia Biologica Hungarica 23, 127135.Google Scholar
Hofmann, E., Ford, S., Powell, E. and Klinck, J. (2001). Modelling studies of the effect of climate variability on MSX disease in eastern oyster (Crassostrea virginica) populations. Hydrobiologia 460, 195212.Google Scholar
Hogans, W. E. (1989). Mortality of cultured Atlantic salmon, Salmo salar L., parr caused by an infection of Ergasilus labracis (Copepoda: Poecilostomatoida) in the lower Saint John River, New Brunswick, Canada. Journal of Fish Diseases 12, 529531.Google Scholar
Horton, T. and Okamura, B. (2001). Cymothoid isopod parasites in aquaculture: a review and case study of a Turkish sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) farm. Diseases of Aquatic Organisms 46, 181188.Google Scholar
Hudson, D., Hudson, N. B. and Pyecroft, S. B. (2001). Mortalities of Penaeus japonicus prawns associated with microsporidean infection. Australian Veterinary Journal 79, 504505.Google Scholar
Hudson, D. and Lester, R. (1992). Relationships between water quality parameters and symbiont ciliates on prawns (Penaeus japonicas Bate) in aquaculture. Aquaculture 105, 269280.Google Scholar
Hutson, K. S., Ernst, I. and Whittington, I. D. (2007). Risk assessment for metazoan parasites of yellowtail kingfish Seriola lalandi (Perciformes: Carangidae) in South Australian sea-cage aquaculture. Aquaculture 271, 8599.Google Scholar
Huys, R., Llewellyn-Hughes, J., Olson, P. D. and Nagasawa, K. (2006). Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida). Biological Journal of the Linnean Society 87, 403425.Google Scholar
Ibieta, P., Tapia, V., Venegas, C., Hausdorf, M. and Takle, H. (2011). Chilean salmon farming on the horizon of sustainability: review of the development of a highly intensive production, the ISA crisis and implemented actions to reconstruct a more sustainable aquaculture industry. In Aquaculture and the Environment: a Shared Destiny (ed. Sladonja, B.), pp. 1246. Intech, Croatia. ISBN 978-953-307-749-9.Google Scholar
Iglesias, R., Parama, A., Alvarez, M. F., Leiro, J., Fernandez, J. and Sanmartin, M. L. (2001). Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Diseases of Aquatic Organisms 46, 4755.Google Scholar
Imai, T. (2005). Sea farming of red sea bream Pagrus major (Temmick et Schlegel) in waters off Kanagawa Prefecture, Japan with special reference to stock enhancement effect. Bulletin of the Kanagawa Prefecture Fisheries Research Institute 10, 6571.Google Scholar
Isshiki, T., Nagano, T. and Miki, K. (2007). Occurrence of a monogenean gill parasite Pseudorhabdosynochus epinepheli on red spotted grouper Epinephelus akaara and its experimental treatment by hydrogen peroxide bathing. Fish Pathology 42, 7174.Google Scholar
Itoh, N. (2009?). Marteilioides chungmuensis and its impact on Crassostrea gigas. Presentation available at http://wwz.ifremer.fr/crlmollusc/content/download/39925/545564/file/2_Marteilioides_Itoh.pdf Google Scholar
Itoh, N., Komiyama, H., Ueki, N. and Ogawa, K. (2004). Early developmental stages of a protozoan parasite, Marteiliodes chungmuensis (Paramyxea), the causative agent of the ovary enlargement disease in the Pacific oyster, Crassostrea gigas . International Journal for Parasitology 34, 11291135.Google Scholar
Itoh, N., Meyer, G. R., Tabata, A., Lowe, G., Abbott, C. L. and Johnson, S. C. (2013). Rediscovery of the Yesso scallop pathogen Perkinsus qugwadi in Canada, and development of PCR tests. Diseases of Aquatic Organisms 104, 8391.Google Scholar
Itoh, N., Oda, T., Ogawa, K. and Wakabayashi, H. (2002). Identification and development of a paramyxean ovarian parasite in the Pacific oyster Crassostrea gigas . Fish Pathology 37, 2328.Google Scholar
Jee, B. Y., Kim, Y. C. and Park, M. (2001). Morphology and biology of parasite responsible for scuticociliatosis of cultured olive flounder Paralichthys olivaceus . Diseases of Aquatic Organisms 47, 4955.Google Scholar
Johnson, S. C., Treasurer, J. W., Bravo, S., Nagasawa, K. and Kabata, Z. (2004). A review of the impact of parasitic copepods on marine aquaculture. Zoological Studies 43, 229243.Google Scholar
Johnstone, A. K. (1984). Pathogenesis and life cycle of the myxosporean Parvicapsula sp. infecting marine cultured coho salmon . PhD dissertation, University of Washington, Seattle, Washington.Google Scholar
Jung, S.-J., Kitamura, S.-I., Song, J.-Y. and Oh, M.-J. (2007). Miamiensis avidus (Ciliophora: Scuticociliatida) causes systemic infection of olive flounder Paralichthys olivaceus and is a senior synonym of Philasterides dicentrarchi . Diseases of Aquatic Organisms 73, 227234.Google Scholar
Kabata, Z. and Whitaker, D. J. (1989). Kudoa thyrsites (Gilchrist, 1924) (Myxozoa) in the cardiac muscle of Pacific salmon (Oncorhynchus spp.) and steelhead trout (Salmo gairdneri). Canadian Journal of Zoology 67, 341342.Google Scholar
Kaiser, J. B. and Holt, G. J. (2005). Species Profile. Cobia. Southern Regional Aquaculture Center and the United States Department of Agriculture No. 7202, 6 pp.Google Scholar
Kamaishi, T. and Yoshinaga, T. (2002). Detection of Haplosporidium nelsoni in Pacific oyster Crassostrea gigas in Japan. Fish Pathology 37, 193195.Google Scholar
Kanchanakhan, S., Chanratchakool, P. and Direkbusarakom, S. (2001). The impact of health problems on small-scale coastal cage fish culture in Thailand. In Proceedings of the Asia Regional Scoping Workshop on Primary Aquatic Animal Health Care for Small Scale Rural Aquaculture, Dhaka, Bangladesh, September 1999.Google Scholar
Kaneko, J. J., Yamada, R., Brock, J. A. and Nakamura, R. M. (1988). Infection of tilapia, Oreochromis mossambicus (Trewavas), by a marine monogenean, Neobenedenia melleni (MacCallum, 1927) Yamaguti, 1963 in Kaneohe Bay, Hawaii, USA, and its treatment. Journal of Fish Diseases 11, 295300.Google Scholar
Karagiannis, D. and Angelidis, P. (2007). Infection of cultured mussels Mytilus galloprovincialis by the protozoan Marteilia sp. in the Thermaikos Gulf (N Greece). Bulletin of the European Association of Fish Pathologists 27, 131141.Google Scholar
Karatayev, A. Y., Mastitsky, S. E., Burlakova, L. E., Karatayev, V. A., Hajduk, M. M. and Conn, D. B. (2012). Exotic molluscs in the Great Lakes host epizootically important trematodes. Journal of Shellfish Research 31, 885894.Google Scholar
Karlsbakk, E., Sæther, P. A., Høstlund, C., Fjellsøy, K. R. and Nylund, A. (2002). Parvicapsula pseudobranchicola n. sp. (Myxozoa), a myxosporidian infecting the pseudobranch of cultured Atlantic salmon (Salmo salar) in Norway. Bulletin of the European Association of Fish Pathologists 22, 381387.Google Scholar
Katagiri, T., Hosokawa, A., Maita, M., Hirai, M., Takagi, S. and Endo, M. (2007). A new disease in cultured yellowtail Seriola quinqueradiata characterized by encephalomyelitis. Fish Pathology 42, 223224.Google Scholar
Katharios, K., Garaffo, M., Sarter, K., Athanassopoulou, F. and Mylonas, C. C. (2007). A case of high mortality due to heavy infestation of Ceratomyxa diplodae in sharpsnout sea bream (Diplodus puntazzo) treated with reproductive steroids. Bulletin of the European Association of Fish Pathologists 27, 4347.Google Scholar
Katharios, P., Hayward, C., Papandroulakis, N. and Divanach, P. (2006). Pathology of Lamellodiscus spp. (Monogenea) parasitizing the gills of sharpsnout seabream and preliminary results of formalin treatment. Bulletin of the European Association of Fish Pathologists l26, 196201.Google Scholar
Kent, M. L. and Dawe, S. C. (1990). Experimental transmission of a plasmacytoid leukemia of chinook salmon (Oncorhynchus tshawytscha). Cancer Research 50 (Suppl.), 56795681.Google Scholar
Kent, M. L., Elston, R. A., Nerad, T. A. and Sawyer, T. K. (1987). An Isonema-like flagellate (Protozoa: Mastigophora) infection in larval geoduck clams, Panope abrupta . Journal of Invertebrate Pathology 50, 221229.Google Scholar
Kent, M. L., Sawyer, T. K. and Hedrick, R. P. (1988). Paramoeba pemaquidensis (Sarcomastigophora: Paramoebidae) infestation of the gills of coho salmon Oncorhynchus kisutch reared in sea water. Diseases of Aquatic Organisms 5, 163169.Google Scholar
Kent, M. L., Elliott, D. G., Groff, J. M. and Hedrick, R. P. (1989). Loma salmonae (Protozoa: Microspora) infections in seawater reared coho salmon, Oncorhynchus kisutch . Aquaculture 80, 211222.Google Scholar
Kent, M. L., Ellis, J., Fournie, J. W., Dawe, S. C., Bagshaw, J. W. and Whitaker, D. J. (1992). Systemic hexamitid (Protozoa: Diplomonadida) infection in seawater pen – reared Chinook salmon Oncorhynchus tshawytscha . Diseases of Aquatic Organisms 14, 8189.Google Scholar
Kent, M. L., Margolis, L. and Fournie, J. W. (1991). A new eye disease in pen – reared chinook caused by metacestodes of Gilquinia squali (Trypanorhyncha). Journal of Aquatic Animal Health 3, 134140.Google Scholar
Kent, R. M. L. (1979). The influence of heavy infestations of Polydora ciliata on the flesh content of Mytilus edulis . Journal of the Marine Biological Association of the United Kingdom 59, 289297.Google Scholar
Kent, R. M. L. (1981). The effect of Polydora ciliata on the shell strength of Mytilus edulis . Journal du Conseil/Conseil Permanent International pour l'Exploration de la Mer 39, 252255.Google Scholar
Khan, R. A. (1985). Pathogenesis of Trypanosoma murmanensis in marine fish of the northwestern Atlantic following experimental transmission. Canadian Journal of Zoology 63, 21412144.Google Scholar
Khan, R. A. (2004). Disease outbreaks and mass mortality in cultured Atlantic cod, Gadus morhua L., associated with Trichodina murmanica (Ciliophora). Journal of Fish Diseases 27, 181184.Google Scholar
Khan, R. A. (2005). Prevalence and influence of Loma branchialis (Microspora) on growth and mortality in Atlantic cod (Gadus morhua) in coastal Newfoundland. Journal of Parasitology 91, 12301232.Google Scholar
Khan, R. A., Lee, E. M. and Barker, D. (1990). Lernaeocera branchialis: potential pathogen to cod ranching. Journal of Parasitology 76, 913917.Google Scholar
Kikuchi, K. (2006). Present status of research and production of tiger puffer Takifugu rubripes in Japan. In Avances en Nutrición Acuicola. VIII Simposium Internacional De Nutrición Acuícola, 15th–17th Noviembre (ed. Cruz Suárez, L. E., Ricque Marie, D., Tapia Salazar, M., Nieto López, M. G., Villarreal Cavavos, D. A., Puello Cruz, A. C. and Garcia Ortega, A.), pp. 2028. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. ISBN 970-694-333-5.Google Scholar
Kim, H.-J., Park, J. S., Park, K. H., Shin, Y.-K. and Park, K.-I. (2014). The kinetoplastid parasite Azumiobodo hoyamushi, the causative agent of soft tunic syndrome of the sea squirt Halocynthia roretzi, resides in the East Sea of Korea. Journal of Invertebrate Pathology 116, 3642.Google Scholar
Kim, I. H. (2004). Poecilostomatoid copepods associated with bivalves in Korea and their distribution. Zoological Studies 43, 187192.Google Scholar
Kim, I. H. and Sato, S. I. (2010). A review of copepods associated with bivalves in Japan, with description of two new species (Crustacea, Copepoda, Cyclopoida). Bulletin of the Tohoku University Museum 9, 122.Google Scholar
Kim, K. H. and Cho, J. B. (2000). Treatment of Microcotyle sebastis (Monogenea: Polyopisthocotylea) infestation with praziquantel in an experimental cage simulating commercial rockfish Sebastes schlegeli culture conditions. Diseases of Aquatic Organisms 40, 229231.Google Scholar
Kim, S. M., Cho, J. B., Kim, S. K., Nam, Y. K. and Kim, K. H. (2004 a). Occurrence of scuticociliatosis in olive flounder Paralichthys olivaceus by Phiasterides dicentrarchi (Ciliophora: Scuticociliatida). Diseases of Aquatic Organisms 62, 233238.Google Scholar
Kim, S. M., Cho, J. B., Lee, E. H., Kwon, S. R., Kim, S. K., Nam, Y. K. and Kim, K. H. (2004 b). Pseudocohnilembus persalinus (Ciliophora: Scuticociitida) is an additional species causing scuticociliatosis in olive flounder Paralichthys olivaceus . Diseases of Aquatic Organisms 62, 239244.Google Scholar
Kismohandaka, G., Roberts, W., Hedrick, R. P. and Friedman, C. S. (1995). Physiological alterations of the black abalone, Haliotis cracherodii Leach, with withering syndrome. Journal of Shellfish Research 14, 269270.Google Scholar
Koçak, O. and Tatlıdil, F. F. (2004). Cost analysis in gilthead sea bream (Sparus aurata Linnaeus, 1758) and sea bass (Dicentrarchus labrax Linnaeus, 1758) production in Milas District-Muğla Province, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 4, 3338.Google Scholar
Kolkovski, S. and Sakakura, Y. (2004). Yellowtail kingfish, from larvae to mature fish – problems and opportunities. In Avances en Nutrición Acuícola VII. Memorias del VII Simposium Internacional de Nutrición Acuícola, 16th–19th November (ed. Cruz Suárez, L. E., Ricque Marie, D., Nieto López, M. G., Villarreal, D., Scholz, U. and González, M.), pp. 117. Hermosillo, Sonora, México.Google Scholar
Korringa, P. (1951). Le Mytilicola intestinalis Steuer (Copeposa Parasitica) menace l'industrie moulière en Zelande. Revue des Travaux de l'Institut des Pêches Maritimes 17, 913.Google Scholar
Kristmundsson, Á., Eydal, M. and Helgason, S. (2006). Progress of co-infections of Trichodina cooperi and T. murmanica parasitising farmed Atlantic cod Gadus morhua juveniles in Iceland. Diseases of Aquatic Organisms 71, 213223.Google Scholar
Kubota, S. S. and Takakuwa, M. (1963). Studies on the diseases of marine cultured fishes: I. General description and preliminary discussion of fish diseases in Mie Prefecture. Journal of the Faculty of Fisheries, Prefectural University of Mie 6, 107124. [English translation, Fisheries Research Board of Canada Translation Series, Biological Station, Nanaimo, British Columbia, No. 739].Google Scholar
Kumagai, A., Suto, A., Ito, H., Tanabe, T., Song, J.-T., Kitamura, S.-I., Hirose, E., Kamaishi, T. and Miwa, S. (2011). Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by a kinetoplastid protist. Diseases of Aquatic Organisms 95, 153161.Google Scholar
Kumagai, A., Suto, A., Ito, H., Tanabe, T., Takahashi, K., Kamaishi, T. and Miwa, S. (2010). Mass mortality of cultured ascidians Halocynthia roretzi associated with softening of the tunic and flagellate-like cells. Diseases of Aquatic Organisms 90, 223234.Google Scholar
Kuperman, B. I. and Matey, V. E. (1999). Massive infestation by Amyloodinium ocellatum (Dinoflagellida) of fish in a highly saline lake, Salton Sea, California, USA. Diseases of Aquatic Organisms 39, 6573.Google Scholar
Kvenseth, P. G. (1997). Best current practice for lice control in Norway. Caligus 2, 49.Google Scholar
Kvingedal, R., Owens, L. and Jerry, D. R. (2006). A new parasite that infects eggs of the mud crab, Scylla serrata, in Australia. Journal of Invertebrate Pathology 93, 5459.Google Scholar
Lader, P., Dempster, T., Fredheim, A. and Jensen, Ø. (2008). Current induced net deformations in full-scale sea-cages for Atlantic salmon (Salmo salar). Aquacultural Engineering 38, 5265.Google Scholar
Lafferty, K. D. and Kuris, A. M. (1993). Mass mortality of abalone Haliotis cracherodii on the California Channel Islands: tests of epidemiological hypotheses. Marine Ecology – Progress Series 96, 239248.Google Scholar
Landsberg, J. H., Steidinger, K. A., Blakesley, B. A. and Zondervan, R. L. (1994). Scanning electron microscope study of dinospores of Amyloodinium cf. ocellatum, a pathogenic dinoflagellate parasite of marine fish, and comments on its relationship to the Peridiniales. Diseases of Aquatic Organisms 20, 2332.Google Scholar
La Peyre, M. K., Nickens, A. D., Volety, A. K., Tolley, G. S. and La Peyre, J. F. (2003). Environmental significance of freshets in reducing Perkinsus marinus infection in eastern oysters Crassostrea virginica: potential management applications. Marine Ecology Progress Series 248, 165176.Google Scholar
Lauckner, G. (1983). Diseases of Mollusca: Bivalvia. In Diseases of Marine Animals, Vol. II. (ed. Kinne, O.), pp. 805817. Biologische Anstalt Helgoland, Hamburgh.Google Scholar
Laviña, E. M. (1977). The biology and control of Caligus sp. an ectoparasite of the adult milkfish Chanos chanos Forskal. SEAFDEC Research Report 1977, pp. 1213.Google Scholar
Laviña, E. M. (1978). A study on certain aspects on the biology and control of Caligus sp., an ectoparasite of the adult milkfish Chanos chanos (Forskal). Fisheries Research Journal Philippines 3, 1124.Google Scholar
Le Breton, A. and Marques, A. (1995). Occurrence of a histozoic Myxidium infection in two marine cultured species: Puntazzo puntazzo C. and Pagrus major . Bulletin of the European Association of Fish Pathologists 15, 210212.Google Scholar
Lee, M-K., Cho, B-Y., Lee, S-J., Kang, J-Y., Jeong, H. D., Huh, S. H. and Huh, M-D. (2001). Histopathological lesions of Manila clam, Tapes philippinarum, from Hadong and Namhae coastal areas of Korea. Aquaculture 201, 199209.Google Scholar
Lei, S. (2000). Studies on pathogenology and histopathology of disease in Sinonovacula constricta caused by metacercariae of Monorchis xiamenensis . Journal of Oceanography in Taiwan Strait 1, 6064.Google Scholar
Leibovitz, L., Elston, R., Lipovsky, V. P. and Donaldson, J. (1978). A new disease of larval Pacific oysters (Crassostrea gigas). Proceedings of the Annual Meeting – World Mariculture Society 9, 603615.Google Scholar
Leong, T.–S. and Wong, S.-Y. (1986). Parasite fauna of seabass, Lates calcarifer Bloch, from Thailand and from floating cage culture in Penang, Malaysia. In Proceedings of the First Asian Fisheries Forum; 26–31 May 1986, Manila, Philippines (ed. Maclean, J. L., Dizon, L. B. and Hosillos, L. V.), pp. 251254. Asian Fisheries Society, Manila, Philippines.Google Scholar
Leong, T.-S. and Wong, S.-Y. (1988). A comparative study of the parasite fauna of wild and cultured grouper (Epinephelus malabaricus Bloch et Schneider) in Malaysia. Aquaculture 68, 203207.Google Scholar
Leong, T. S. and Wong, S. Y. (1990). Parasites of healthy and diseased juvenile grouper (Epinephelus malabaricus (Bloch and Schneider)) and seabass (Lates calcarifer (Bloch)) in floating cages in Penang, Malaysia. Asian Fisheries Science 3, 319327.Google Scholar
Lester, R. J. G. (1982). Unicapsula seriolae n. sp. (Myxosporea, Multivalvulida) from Australian yellowtail kingfish Seriola lalandi . Journal of Parasitology 29, 584587.Google Scholar
Lester, R. J. G. (1986). Field and laboratory observation on the oyster parasite Marteilia sydneyi . In Parasite Lives (ed. Cremin, M., Dobson, C. and Moorhouse, D.), pp. 3340. University of Queensland Press, Brisbane.Google Scholar
Li, C., Song, S., Liu, Y. and Chen, T. (2013). Hematodinium infections in cultured Chinese swimming crab, Portunus trituberculatus, in northern China. Aquaculture 396–399, 5965.Google Scholar
Li, M. F., Cornick, J. W. and Miller, R. J. (1982). Studies of recent mortalities of the sea urchin (Strongylocentrotus droebachiensis) in Nova Scotia. Conseil International de l'Exploration de la Mer CM 1982/L 46.Google Scholar
Li, Y. Y., Xia, X. A., Wu, Q. Y., Liu, W. H. and Lin, Y. S. (2008). Infection with Hematodinium sp. in mud crabs Scylla serrata cultured in low salinity water in southern China. Diseases of Aquatic Organisms 82, 145150.Google Scholar
Lin, C. L. (1989). A new species of Caligus Copepoda Caligidae parasitic on milkfish Chanos chanos . Crustaceana 57, 225246.Google Scholar
Lin, C. L. and Ho, J. S. (1993). Life history of Caligus epidemicus Hewitt, parasitic on the tilapia (Oreochromis mossambicus) cultured in salt water. In Pathogens of Wild and Farmed Fish: Sea Lice (ed. Boxshall, G. A. and Defaye, D.), pp. 515. Ellis Horwood, Chichester, UK.Google Scholar
Lin, C. L. and Ho, J. S. (1998). Two new species of ergasilid copepods parasitic on fishes cultured in brackish water in Taiwan. Proceedings of the Biological Society of Washington 111, 1527.Google Scholar
Lin, C.-L., Ho, J.-S. and Chen, S.-N. (1994). Two species of Caligus (Copepoda: Caligidae) parasitic on black sea bream (Acanthopagrus schlegeli) cultured in Taiwan. Fish Pathology 29, 253264.Google Scholar
Lin, Q., Yang, M., Huang, Z., Ni, W., Fu, G., Guo, G., Wang, Z. and Huang, X. (2013). Cloning, expression and molecular characterization of a 14-3-3 gene from a parasitic ciliate, Cryptocaryon irritans . Veterinary Parasitology 197, 427435.Google Scholar
Lio-Po, G. D. and Sanvictores, E. G. (1986). Tolerance of Penaeus monodon eggs and larvae to fungicides against Lagenidium sp. and Haliphthoros philippinensis . Aquaculture 51, 161168.Google Scholar
Lleonart, M., Handlinger, J. and Powell, M. (2003). Spionid mudworm infestation of farmed abalone (Haliotis spp.). Aquaculture 221, 8596.Google Scholar
Lodeiros, C., Bolinches, J., Dopazo, C. P. and Toranzo, A. E. (1987). Bacillary necrosis in hatcheries of Ostrea edulis in Spain. Aquaculture 65, 1529.Google Scholar
Lo, C. M., Morand, S. and Galzin, R. (1998). Parasite diversity/host age and size relationship in three coral-reef fishes from French Polynesia. International Journal for Parasitology 28, 16951708.Google Scholar
Lohrmann, K. B. (2009). How healthy are cultivated scallops (Argopecten purpuratus) from Chile? A histopathological survey. Revista de Biología Marina y Oceanografía 44, 3547.Google Scholar
Lom, J. and Nigrelli, R. F. (1970). Brooklynella hostilis, n.g., n.sp., a pathogenic cyrtophorine ciliate in marine fish. Journal of Protozoology 17, 224232.Google Scholar
Long, H., Song, W., Chen, J., Gong, J., Ji, D., Hu, X., Ma, H., Zhu, M. and Wang, M. (2006). Studies on an endoparasitic ciliate Boveria labialis (Protozoa: Ciliophora) from the sea cucumber, Apostichopus japonicus . Journal of the Marine Biological Association of the UK 86, 823828.Google Scholar
Lopez, C., Rajan, P. R., Lin, J. H., Kuo, T. and Yang, H. (2002). Disease outbreak in seafarmed cobia (Rachycentron canadum) associated with Vibrio spp., Photobacterium damselae ssp. piscicida, monogenean and myxosporean parasites. Bulletin of the European Association of Fish Pathologists 22, 206211.Google Scholar
López-Téllez, N. A., Vidal-Martínez, V. M. and Overstreet, R. M. (2009). Seasonal variation of ectosymbiotic ciliates on farmed and wild shrimps from coastal Yucatan, Mexico. Aquaculture 287, 271277.Google Scholar
Lupatsch, I., Santos, G. A., Schrama, J. W. and Verreth, J. A. J. (2010). Effect of stocking density and feeding level on energy expenditure and stress responsiveness in European sea bass Dicentrarchus labrax . Aquaculture 298, 245250.Google Scholar
MacKenzie, C. L. (1996). History of oystering in the United States and Canada, featuring the eight greatest oyster estuaries. Marine Fisheries Review 58, 178.Google Scholar
Madin, J., Chong, V. C. and Hartstein, N. D. (2010). Effects of water flow velocity and fish culture on net biofouling in fish cages. Aquaculture Research 41, e602e617.Google Scholar
Maguire, A. K. and Rogers-Bennett, L. (2013). An ectoparasitic snail (Evalea tenuisculpta) infects red abalone (Haliotis rufescens) in northern California. California Fish and Game 99, 8089.Google Scholar
Mansell, B., Powell, M. D., Ernst, I. and Nowak, B. F. (2005). Effects of the gill monogenean Zeuxapta seriolae (Meserve, 1938) and treatment with hydrogen peroxide on pathophysiology of kingfish, Seriola lalandi Valenciennes, 1833. Journal of Fish Diseases 28, 253262.Google Scholar
Marine Harvest (2007). Annual report. 82 pp.Google Scholar
Marine Harvest (2013). Annual report. 208 pp.Google Scholar
Marine Scotland, The Scottish Government (2012). Amoebic Gill Disease. Topic Sheet No. 96 V1. http://www.scotland.gov.uk/Resource/0039/00393037.pdf on the 30/7/2013.Google Scholar
Martell, D. J., Duhaime, J. and Parsons, G. J. (eds) (2013). Canadian aquaculture R&D review 2013. Aquaculture Association of Canada Special Publication 23, 100.Google Scholar
Matthews, C. G. G., Richards, R. H., Shinn, A. P. and Cox, D. I. (2013). Gill pathology in Scottish farmed Atlantic salmon, Salmo salar L., associated with the microsporidian Desmozoon lepeophtherii Freeman et Sommerville, 2009. Journal of Fish Diseases 36, 861869.Google Scholar
McArdle, J. F. (1984). Trichodina as a cause of mortalities in cage reared rainbow trout (Salmo gairdneri) and salmon (Salmo salar). Bulletin of the European Association of Fish Pathologists 4, 36.Google Scholar
McGladdery, S. E., Bower, S. M. and Getchell, R. G. (2006). Diseases and parasites of scallops. Developments in Aquaculture and Fisheries Science 35, 595650.Google Scholar
McIlwraith, I. (2010). Clean Seas takes a bath on kingfish loss. The Age (8th September). http://www.theage.com.au/business/clean-seas-takes-a-bath-on-kingfish-loss-20100907-14zq0.html Google Scholar
McLean, E., Salze, G. and Craig, S. R. (2008). Parasites, diseases and deformities of cobia. Ribarstvo 66, 116.Google Scholar
Merella, P., Cherchi, S., Garippa, G., Fioravanti, M. L., Gustinelli, A. and Salati, F. (2009). Outbreak of Sciaenacotyle panceri (Monogenea) on cage-reared meagre Argyrosomus regius (Osteichthyes) from the western Mediterranean Sea. Diseases of Aquatic Organisms 86, 169173.Google Scholar
Merella, P., Cherchi, S., Salati, F. and Garippa, G. (2005). Parasitological survey of sharpsnout seabream Diplodus puntazzo (Cetti, 1777) reared in sea cages in Sardinia (western Mediterranean. Bulletin of the European Association of Fish Pathologists 25, 140147.Google Scholar
Meyers, T. R. (1981). Endemic diseases of cultured shellfish of Long Island, New York: adult and juvenile American oysters (Crassostrea virginica) and hard clams (Mercenaria mercenaria). Aquaculture 22, 305330.Google Scholar
Michie, I. (2001). Causes of downgrading in the salmon farming industry. In Farmed Fish Quality (ed. Kestin, S. C. and Warris, P. D.), pp. 129136. Fishing News Books, Oxford.Google Scholar
Michine, A. (1999). Neoheterobothrium sp. found on Japanese flounder cultured commercially or maintained as spawners. Research Report of the Shimane Prefectural Center of Cultural Fisheries 2, 1523. [In Japanese].Google Scholar
Mitchell, C. G. (1993). Eubothrium. Aquaculture Information Series, No. 14, 8 pp. Marine Laboratory, Aberdeen, UK. http://www.marlab.ac.uk Google Scholar
Miyazaki, T., Fujimaki, Y. and Katai, K. (1986). A light and electron microscopic study on epitheliocystis disease in cultured fish. Bulletin of the Japanese Society for the Science of Fish 52, 199202.Google Scholar
Mladineo, I. (2003). Myxosporidean infections in Adriatic cage-reared fish. Bulletin of the European Association of Fish Pathologists 23, 113122.Google Scholar
Mladineo, I. (2006). Parasites of Adriatic cage reared fish. Acta Adriatica 47, 2328.Google Scholar
Mladineo, I. and Tudor, M. (2004). Digenea of Adriatic cage-reared northern bluefin tuna (Thunnus thynnus thynnus). Bulletin of the European Association of Fish Pathologists 24, 144152.Google Scholar
Mladineo, I., Žilič, J. and Čankovič, M. (2008). Health survey of Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), reared in Adriatic cages from 2003 to 2006. Journal of the World Aquaculture Society 39, 281289.Google Scholar
Mo, T. A. and MacKenzie, K. A. (1991). Occurrence of Gyrodactyloides bychowskii Albova, 1948 on gills of sea-caged Atlantic salmon. Bulletin of the European Association of Fish Pathologists 11, 156158.Google Scholar
Mo, T. A., Poppe, T. T. and Iversen, L. (1990). Systemic hexamitosis in salt-water reared Atlantic salmon. Bulletin of the European Association of Fish Pathologists 10, 6970.Google Scholar
Montero, F., Cuadrado, M., Padros, F., Crespo, S. and Raga, J. A. (2007). Cryptocaryon irritans and Enteromyxum leei, two threats for the culture of Diplodus puntazzo in the Mediterranean. Bulletin of the European Association of Fish Pathologists 27, 242247.Google Scholar
Montero, F. E., Crespo, S., Padrós, F., De la Gándara, F., García, A. and Raga, J. A. (2004). Effects of the gill parasite Zeuxapta seriolae (Monogenea: Heteraxinidae) on the amberjack Seriola dumerili Risso (Teleostei: Carangidae). Aquaculture 232, 153163.Google Scholar
Montes, J. F., Durfort, M. and García-Valero, J. (2001). Parasitism by the protozoan Perkinsus atlanticus favours the development of opportunistic infections. Diseases of Aquatic Organisms 46, 5766.Google Scholar
Moore, J. D., Finley, C. A., Robbins, T. T. and Friedman, C. S. (2002). Withering syndrome and restoration of southern California abalone populations. Reports of California Cooperative Oceanic Fisheries Investigations 43, 112119.Google Scholar
Moore, J. D., Juhasz, C. I., Robbins, T. T. and Vilchis, L. I. (2009). Green abalone, Haliotis fulgens infected with the agent of withering syndrome does not express disease signs under a temperature regime permissive for red abalone, Haliotis rufescens . Marine Biology 156, 23252330.Google Scholar
Moore, J. D., Robbins, T. T. and Friedman, C. S. (2000). Withering syndrome in farmed red abalone Haliotis rufescens: thermal induction and association with a gastrointestinal Rickettsiales-like prokaryote. Journal of Aquatic Animal Health 12, 2634.Google Scholar
Moran, J. D. W., Whitaker, D. J. and Kent, M. L. (1999). A review of the myxosporean genus Kudoa Meglitsch, 1947, and its impact on the international aquaculture industry and commercial fisheries. Aquaculture 172, 163196.Google Scholar
Mori, K., Sato, W., Nomura, T. and Imajima, M. (1985). Infestation of the Japanese scallop Patinopecten yessoensis by the boring polychaetes, Polydora, on the Okhotsk Sea coast of Hokkaido, especially in Abashiri waters. Nippon Suisan Gakkaishi 51, 371380. [In Japanese].Google Scholar
Morrison, R., Nowak, B., Crosbie, P., Adams, M., Bridle, A. and Rise, M. (2006). Insights into amoebic gill disease pathogenesis. Aquaculture Health International 45.Google Scholar
Muhd-Faizul, H. A. H., Kua, B. C. and Leaw, Y. Y. (2012). Caligidae infestation in Asian seabass, Lates calcarifer, Bloch 1790 cultured at different salinity in Malaysia. Veterinary Parasitology 184, 6872.Google Scholar
Munday, B. L., Foster, C. K., Roubal, F. R. and Lester, R. J. G. (1990). Paramoebic gill infection and associated pathology of Atlantic salmon, Salmo salar, and rainbow trout, Salmo gairdneri, in Tasmania. In Pathology in Marine Science (ed. Perkins, F. O. and Cheng, T. C.), pp. 215222. Academic Press, London.Google Scholar
Munday, B. L., O'Donoghue, P. J., Watts, M., Rough, K. and Hawkesford, T. (1997). Fatal encephalitis due to the scuticociliate Uronema nigricans in sea-caged, southern bluefin tuna Thunnus maccoyii . Diseases of Aquatic Organisms 30, 1725.Google Scholar
Munford, J. G., DaRos, L. and Strada, R. (1981). A study on the mass mortality of mussels in the Laguna Veneta. Journal of the World Mariculture Society 12, 186199.Google Scholar
Munday, B. L., Zilberg, D. and Findlay, V. (2001). Gill disease of marine fish caused by infection with Neoparamoeba pemaquidensis . Journal of Fish Diseases 24, 497507.Google Scholar
Munday, B. L., Sawada, Y., Cribb, T. and Hayward, C. J. (2003). Diseases of tunas, Thunnus spp. Journal of Fish Diseases 26, 187206.Google Scholar
Muraosa, Y., Lawhavinit, O. and Hatai, K. (2006). Lagenidium thermophilum isolated from eggs and larvae of black tiger shrimp Penaeus monodon in Thailand. Fish Pathology 41, 3540.Google Scholar
Muroga, K., Kawatow, K. and Ichizono, H. (1981). Infestation by Alella macrotrachelus (Copepoda) of cultured black sea-bream. Fish Pathology 16, 139144.Google Scholar
Mustafa, A., Rankaduwa, W. and Campbell, P. (2001). Estimating the cost of sea lice to salmon aquaculture in eastern Canada. Canadian Veterinary Journal 42, 5456.Google Scholar
Nagasawa, K., Bresciani, J. and Lützen, J. (1988). Morphology of Pectenophilus ornatus, new genus, new species, a copepod parasite of the Japanese scallop Patinopecten yessoensis . Journal of Crustacean Biology 8, 3142.Google Scholar
Nagasawa, K. and Nagata, M. (1992). Effects of Pectenophilus ornatus (Copepoda) on the biomass of cultured Japanese scallop Patinopecten yessoensis . Journal of Parasitology 78, 552554.Google Scholar
Nakada, M. (2008). Capture-based aquaculture of yellowtail. In Capture-Based Aquaculture. Global Overview (ed. Lovatelli, A. and Holthus, P. F.), pp. 199215. FAO Fisheries Technical Paper. No. 508. FAO, Rome.Google Scholar
Nakajima, K. and Egusa, S. (1972). Studies on a new trypanorhynchan larva, Callotetrarhynchus sp., parasitic on cultured yellowtail – XV. Life cycle. Fish Pathology 7, 614. [In Japanese, English summary].Google Scholar
Nakajima, K. and Egusa, S. (1978). Kudoa pericardialis n. sp (Myxosporidea: Chloromyxidae) from cultured yellowtail, Seriola quinqueradiata Temminck et Schlegel. Bulletin of the Japanese Society of Scientific Fisheries 44, 117120.Google Scholar
Nasr, D. H. (1982). Observations on the mortality of the pearl oyster, Pinctada margaritifera, in Dongonab Bay, Red Sea. Aquaculture 28, 271281.Google Scholar
Natividad, J. M., Bondad-Reantaso, M. G. and Arthur, J. R. (1986). Parasites of Nile tilapia (Oreochromis niloticus) in the Philippines. In The First Asia Fisheries Forum (ed. Maclean, J. L., Dizon, L. B. and Hosillos, L. V.), pp. 255259. Asian Fisheries Society, Manila, Philippines.Google Scholar
Ngo, T. T. T. and Choi, K-S. (2004). Seasonal changes of Perkinsus and Cercaria infections in the Manila clam Ruditapes philippinarum from Jeju, Korea. Aquaculture 239, 5768.Google Scholar
Noga, E. J. (2010). Fish Disease: Diagnosis and Treatment, 2nd Edn. Wiley–Blackwell, Ames, Iowa, USA, p. 536.Google Scholar
Nowak, B. F., Hayward, C. J., González, L., Bott, N. J. and Lester, R. J. G. (2011). Sea lice infections of salmonids farmed in Australia. Aquaculture 320, 171177.Google Scholar
Nunan, L. M., Lightner, D. V., Pantoja, C. R., Stokes, N. A. and Reece, K. S. (2007). Characterization of a rediscovered haplosporidian parasite from cultured Penaeus vannamei . Diseases of Aquatic Organisms 74, 6775.Google Scholar
Nylund, A., Karlsbakk, E., Sæther, P. A., Koren, C., Larsen, T., Nielsen, B. D., Brøderud, A. E., Høstlund, C., Fjellsøy, K. R., Lervik, K. and Rosnes, L. (2005). Parvicapsula pseudobranchicola (Myxosporea) in farmed Atlantic salmon Salmo salar: tissue distribution, diagnosis and phylogeny. Diseases of Aquatic Organisms 63, 197204.Google Scholar
Nylund, S., Andersen, L., Sævareid, L., Plarre, H., Watanabe, K., Arnesen, C. E., Karlsbakk, E. and Nylund, A. (2011). Diseases of farmed Atlantic salmon Salmo salar associated with infections by the microsporidian Paranucleospora theridion . Diseases of Aquatic Organisms 94, 4157.Google Scholar
Ogawa, K. (1994). Anoplodiscus tai sp. nov. (Monogenea: Anoplodiscidae) from cultured red sea bream Pagrus major . Fish Pathology 29, 510.Google Scholar
Ogawa, K. (1996). Marine parasitology with special reference to Japanese fisheries and mariculture. Veterinary Parasitology 64, 95105.Google Scholar
Ogawa, K. (1997). Copulation and egg production of the monogenean Heterobothrium okamotoi, a gill parasite of cultured tiger puffer (Takifugu rubripes). Fish Pathology 32, 219223.Google Scholar
Ogawa, K. (1999). Neoheterobothrium hirame sp. n. (Monogenea: Diclidophoridae) from the buccal cavity of Japanese flounder Paralichthys olivaceus . Fish Pathology 34, 195201.Google Scholar
Ogawa, K. (2002). Impacts of diclidophorid monogenean infections on fisheries in Japan. International Journal for Parasitology 32, 373380.Google Scholar
Ogawa, K. and Egusa, S. (1986). Two new species of Paradeontacylix McIntosh, 1934 (Trematoda: Sanguinicolidae) from the vascular system of a cultured marine fish Seriola purpurascens . Fish Pathology 21, 1519.Google Scholar
Ogawa, K. and Fukudome, M. (1994). Mass mortality caused by blood fluke (Paradeontacylix) among amberjack (Seriola dumerili) imported to Japan. Fish Pathology 29, 265269.Google Scholar
Ogawa, K. and Inouye, K. (1997). Heterobothrium infection of cultured tiger puffer, Takifugu rubripes – a field observation. Fish Pathology 32, 1520.Google Scholar
Ogawa, K. and Yokoyama, H. (1998). Parasitic diseases of cultured marine fish in Japan. Fish Pathology 33, 303309.Google Scholar
Ogawa, K. and Yokoyama, H. (2001). Emaciation disease of cultured tiger puffer Takifugu rubripes . Bulletin of the National Research Institute of Aquaculture 5 (Suppl.), 6570.Google Scholar
Ogawa, K., Bondad-Reantaso, M. G., Fukudome, M. and Wakabayashi, H. (1995). Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. Journal of Parasitology 81, 223227.Google Scholar
Ogawa, K., Miyamoto, J., Wang, H. C., Lo, C. F. and Kou, G. H. (2006). Neobenedenia girellae (Monogenea) infection of cultured cobia Rachycentron canadum in Taiwan. Fish Pathology 41, 5156.Google Scholar
Ogawa, K., Yamabata, N. and Yoshinaga, T. (2005 a). Egg-laying of the monogenean Heterobothrium okamotoi on experimentally infected tiger puffer Takifugu rubripes . Fish Pathology 40, 111118.Google Scholar
Ogawa, K., Yasusaki, M. and Yoshinaga, T. (2005 b). Experiments of the blood feeding of Heterobothrium okamoto (Monogenea: Diclidophoridae). Fish Pathology 40, 169174.Google Scholar
O'Halloran, J., Carpenter, J., Ogden, D., Hogans, W. E. and Jansen, M. (1992). Ergasilus labracis on Atlantic salmon. Canadian Veterinary Journal 33, 75.Google Scholar
Okamoto, R. (1963). On the problems of a monogenetic trematode infection of puffers from the Inland Sea of Japan. Suisan Zoshoku 3(Special issue), 1729. [In Japanese].Google Scholar
Olivares, J. and Marshall, S. (2010). Determination of minimal concentration of Piscirickettsia salmonis in water columns to establish a fallowing period in salmon farms. Journal of Fish Diseases 33, 261266.Google Scholar
Oliver, L. M., Fisher, W. S., Ford, S. E., Ragone Calvo, L. M., Burreson, E. M., Sutton, E. B. and Gandy, J. (1998). Perkinsus marinus tissue distribution and seasonal variation in oysters Crassostrea virginica from Florida, Virginia and New York. Diseases of Aquatic Organisms 34, 5161.Google Scholar
O'Neill, M., Frenette, A., O'Keefe, R., Harrison, G., Neil, S., Trippel, E., Benfey, T. and Duffy, M. (2011). Preliminary experiments to establish Loma morhua infections in naïve Atlantic cod (Gadus morhua). Bulletin of the Aquaculture Association of Canada 109–1, 1320.Google Scholar
Overstreet, R. M. (1973). Parasites of some penaeid shrimps with emphasis on reared hosts. Aquaculture 2, 105140.Google Scholar
Overstreet, R. M. (1987). Solving parasite-related problems in cultured Crustacea. International Journal of Parasitology 17, 309318.Google Scholar
Overstreet, R. M. (2007). Effects of a hurricane on fish parasites. Parassitologia 49, 161168.Google Scholar
Padrós, F. and Crespo, S. (1995). Proliferative epitheliocystis associated with monogenean infection in juvenile sea bream Sparus aurata in the North East of Spain. Bulletin of the European Association of Fish Pathologists 15, 4244.Google Scholar
Padrós, F., Zarza, C. and Crespo, S. (2001). Histopathology of cultured sea bream Sparus aurata infected with sanguinicolid trematodes. Diseases of Aquatic Organisms 44, 4752.Google Scholar
Paisley, L. G., Karlsen, E., Jarp, J. and Mo, T. A. (1999). A Monte Carlo simulation model for assessing the risk of introduction of Gyrodactylus salaris to the Tana River, Norway. Diseases of Aquatic Organisms 37, 145152.Google Scholar
Paladini, G., Cable, J., Fioravanti, M. L., Faria, P. J., Di Cave, D. and Shinn, A. P. (2009). Gyrodactylus orecchiae n. sp. (Gyrodactylidae: Monogenea) from farmed populations of gilthead seabream (Sparus aurata L.) in the Adriatic Sea. Folia Parasitologica 56, 2128.Google Scholar
Paladini, G., Hansen, H., Fioravanti, M. L. and Shinn, A. P. (2011). Gyrodactylus longipes sp. nov. (Monogenea: Gyrodactylidae) from farmed populations of gilthead seabream (Sparus aurata L.) from the Mediterranean. Parasitology International 60, 410418.Google Scholar
Palenzuela, O., Sitjà-Bobadilla, A. and Alvarez-Pellitero, P. (1997). Ceratomyxa sparusaurati (Protozoa: Myxosporea) infections in cultured gilthead sea bream Sparus aurata (Pisces: Teleostei) from Spain: aspects of the host-parasite relationship. Parasitology Research 83, 539548.Google Scholar
Papapanagiotou, E. P. and Trilles, J. P. (2001). Cymothoid parasite Ceratothoa parallela inflicts great losses on cultured gilthead sea bream Sparus aurata in Greece. Diseases of Aquatic Organisms 45, 237239.Google Scholar
Papapanagiotou, E. P., Trilles, J. P. and Photis, G. (1999). First record of Emetha audouini, a cymothoid isopod parasite, from cultured sea bass Dicentrarchus labrax in Greece. Diseases of Aquatic Organisms 38, 235237.Google Scholar
Paperna, I. (1975). Parasites and disease of the grey mullet (Mugilidae) with special reference to the seas of the near east. Aquaculture 5, 6580.Google Scholar
Paperna, I., Colorni, A., Gordin, H. and Kissil, G. W. (1977). Diseases of Sparus aurata in marine culture at Elat. Aquaculture 10, 195213.Google Scholar
Paperna, I., Diamant, A. and Overstreet, R. M. (1984). Monogenean infestations and mortality in wild and cultured Red Sea fishes. Helgolander Meeresunters 37, 445462.Google Scholar
Park, K.-I. and Choi, K.-S. (2001). Spatial distribution of the protozoan parasite Perkinsus sp. found in Manila clams Ruditapes philippinarum . Aquaculture 203, 922.Google Scholar
Park, K.-I., Choi, K.-S. and Choi, J.-W. (1999). Epizootiology of Perkinsus sp. found in the Manila clam, Ruditapes philippinarum in Komsoe Bay, Korea. Journal of the Korean Fisheries Society 32, 303309.Google Scholar
Park, K.-I., Park, J.-K., Lee, J. and Choi, K.-S. (2005). Use of molecular markers for species identification of Korean Perkinsus sp. isolated from Manila clams Ruditapes philippinarum . Diseases of Aquatic Organisms 66, 255263.Google Scholar
Patarnello, P. P., Fioravanti, M. L., Caggiano, M. and Restani, R. (1995). Infection by Gnathiidae (Crustacea: Isopoda) in Pagrus major . Bollettino Societa Italiana di Patologica Ittica 7, 3236.Google Scholar
Pavoletti, E., Fioravanti, M. L., Prearo, M. and Ghittino, C. (1999). Osservazioni sulla Caligosi in spigole d'allevamento. Bollettino Societa Italiana di Patalogia Ittica 11, 29.Google Scholar
Paynter, K. T. and Burreson, E. M. (1991). Effect of Perkinsus marinus infection in the eastern oyster Crassostrea virginica: II. Disease development and impact on growth rate at different salinities. Journal of Shellfish Research 10, 425431.Google Scholar
Pedersen, B. H. (1993). Embryos and yolk-sac larvae of turbot Scophthalmus maximus are infested with an endoparasite from the gastrula stage onwards. Diseases of Aquatic Organisms 17, 5759.Google Scholar
Pedersen, B. H., Buchmann, K. and Koie, M. (1993). Baltic larval cod Gadus morhua are infested with a protistan endo-parasite in the yolk sac. Diseases of Aquatic Organisms 16, 2933.Google Scholar
Peng, J. S., Ge, X. P., Li, M., Zhou, W. C., Zhao, Q. L., Xu, P. and Xie, J. (2011). Study on Haplosporidium disease of Babylonia areolata . Acta Hydrobiologica Sinica 35, 803807.Google Scholar
Pereya, W. T. (1962). Mortality of Pacific oysters, Crassostrea gigas (Thunberg), in various exposure situations in Washington. Proceedings of the National Shellfisheries Association 53, 5163.Google Scholar
Perkins, F. O. (1993). Infectious diseases of molluscs. In Pathobiology of Marine and Estuarine Organisms (ed. Couch, J. A. and Fournie, J. W.), pp. 255288. CRC Press, Boca Raton, Florida.Google Scholar
Perrigault, M., Dahl, S. F., Espinosa, E. P., Gambino, L. and Allam, B. (2011). Effects of temperature on hard clam (Mercenaria mercenaria) immunity and QPX (Quahog Parasite Unknown) disease development: II. Defense parameters. Journal of Invertebrate Pathology 106, 322332.Google Scholar
Perrigault, M., Tanguy, A. and Allam, B. (2009). Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genomics 10, 377.Google Scholar
Petersen, E. H., Chinh, D. T. M., Diu, N. T., Phuoc, V. V., Phuong, T. H., Dung, N. V., Dat, N. K., and Giang, P. T. (2011 a). Bioeconomics of grouper, Serranidae Epinephelinae, culture in Vietnam. ACE Discussion Paper 2011/1. http://www.advancedchoiceeconomics.com.au, 19 pp.Google Scholar
Petersen, E. H., Hien, T. T., Suc, N. X. and Thanh, D. V. (2010). Tilapia farming in Vietnam – bioeconomics and perceived constraints to development. ACE Discussion Paper 2009/05. http://www.advancedchoiceeconomics.com.au, 23 pp.Google Scholar
Petersen, E. H., Phuong, T. H., Dat, N. K., Tuan, V. A. and Truc, L. V. (2011 b). Bioeconomics of Asian seabass, Lates calcarifer, culture in Vietnam. ACE Discussion Paper 2011/3. http://www.advancedchoiceeconomics.com.au, 15 pp.Google Scholar
Pogoda, B., Jungblut, S., Buck, B. H. and Hagen, W. (2012). Infestation of oysters and mussels by mytilicolid copepods: differences between natural coastal habitats and two offshore cultivation sites in the German Bight. Journal of Applied Ichthyology 28, 756765.Google Scholar
Pookasawan, T., Boonyarattaplin, S., Arirat, S., Duongsawad, M. and Rernpan, L. (1982). Aquatic diseases. Thai Fish Gazette 40, 4146.Google Scholar
Poppe, T. T. and Mo, T. A. (1993). Systemic, graulomatous hexamitosis of farmed Atlantic salmon: interaction with wild fish. Fisheries Research 17, 147152.Google Scholar
Poppe, T. T., Mo, T. A. and Iversen, L. (1992). Disseminated hexamitosis in sea-caged Atlantic salmon Salmo salar . Diseases of Aquatic Organisms 14, 9197.Google Scholar
Potter, M. A. (1983). Growth rates of cultivated Sydney rock oysters Saccostrea (Crassostrea) commercialis in two estuaries in subtropical southern Queensland. Journal of Agriculture and Animal Science 40, 137140.Google Scholar
Prasertsri, S., Limsuwan, C. and Chuchird, N. (2009). The effects of the microsporidian (Thelohania) infection on the growth and histopathological changes in pond-reared Pacific white shrimp (Litopenaeus vannamei). Kasetsart Journal of Natural Sciences 43, 680688.Google Scholar
Printrakoon, C. and Purivirojkul, W. (2012). Infection of speckled shrimp Metapenaeus monoceros (Decapoda: Penaeidae) by the brancial parasite Orbione bonnieri (Epicardidea: Bopyridae). Vie et Milieu 62, 1722.Google Scholar
Quayle, D. B. (1961). Denman Island disease and mortality. Fisheries Research Board of Canada Manuscript Report 713. Ottawa.Google Scholar
Quayle, D. B. (1982). Denman Island oyster disease 1960–1980. British Columbia Shellfish Mariculture Newsletter 2, 15.Google Scholar
Rae, G. H. (2002). Sea louse control in Scotland, past and present. Pest Management Science 58, 515520.Google Scholar
Ragan, M. A., MacCallum, G. S., Murphy, C. A., Cannone, J. J., Gutell, R. R. and McGladdery, S. E. (2000). Protistan parasite QPX of hard-shell clam Mercenaria mercenaria is a member of Labyrinthulomycota. Diseases of Aquatic Organisms 42, 185190.Google Scholar
Rajendran, K. V., Thirunavukkarasu, A. R. and Santiago, T. C. (2000). Mortality of captive seabass, Lates calcarifer (Bloch) due to monogenetic parasite, Diplectanum latesi (Tripathi, 1957). Journal of Aquaculture in the Tropics 15, 199206.Google Scholar
Ramasamy, P., Jayakumar, R. and Brennan, G. P. (2000). Muscle degeneration associated with cotton shrimp disease of Penaeus indicus . Journal of Fish Diseases 23, 7781.Google Scholar
Ramasamy, P., Rajan, P. R., Jayakumar, R., Rani, S. and Brennan, G. P. (1996). Lagenidium callinectes (Couch, 1942) infection and its control in cultured larval Indian tiger prawn, Penaeus monodon Fabricius. Journal of Fish Diseases 19, 7582.Google Scholar
Ramos, M. F., Costa, A. R., Barandela, T., Saraiva, A. and Rodrigues, P. N. (2007). Scuticociliate infection and pathology in cultured turbot Scophthalmus maximus from the north of Portugal. Diseases of Aquatic Organisms 74, 249253.Google Scholar
Ramos, P. and Oliveira, J. (2001). Amyloodiniosis in turbot, Psetta maxima (L.). Revista Portuguesa de Ciências Veterinárias 540, 201205.Google Scholar
Regidor, S. E. and Arthur, J. R. (1986). Parasites of juvenile milkfish, Chanos chanos . In The First Asian Fisheries Forum, Vol. 1 (ed. Maclean, J. L., Dizon, L. B. and Hosillos, L. V.), pp. 261264. Asian Fisheries Society, Manila, Philippines.Google Scholar
Ren, S. L., Yang, X.-C. and Song, W.-B. (2005). Study on histopathology of the cultured clam Meretrix meretrix suffered from the “mantle hypertrophy disease”. Journal of Ocean University of Qingdao 6, 012.Google Scholar
Rhyne, A. L., Tlusty, M. F., Schofield, P. J., Kaufman, L., Morris, J. A. and Bruckner, A. W. (2012). Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PLoS ONE 7, e35808.Google Scholar
Riddington, G., Radford, A., Paffrath, S., Bostock, J. and Shinn, A. (2006). An economic evaluation of the impact of the salmon parasite Gyrodactylus salaris (Gs) should it be introduced into Scotland: Summary Report. Prepared for the Scottish Executive Environment and Rural Affairs Department, Project Number SAQ/001/05.Google Scholar
Riedel, R., Caskey, L. and Costa-Pierce, B. A. (2002). Fish biology and fisheries ecology of the Salton Sea, California. In Developments in Hydrobiology: The Salton Sea (ed. Barnum, D. A., Elder, J. F., Stephens, D. and Friend, M.), pp. 229244. Kluwer Academic Publishers, Dordrecht, the Netherlands.Google Scholar
Rigos, G., Christophilogiannis, P., Giahnishi, M., Andriopoulou, A., Koutsodimoy, M., Nengas, I. and Alexis, M. (1998). Amyloodinium ocellatum infestation on sharpsnout sea bream, Puntazzo puntazzo Cetti. Bulletin of the European Association of Fish Pathologists 18, 198200.Google Scholar
Rigos, G., Christophilogiannis, P., Yiagnisi, M., Koutsodimou, M., Andriopoulou, K., Nengas, I. and Alexis, M. (1999). Myxosporean infections in Greek mariculture. Aquaculture International 7, 361364.Google Scholar
Rigos, G., Pavlidis, M. and Divanach, P. (2001). Host susceptibility to Cryptocaryon sp. infection of Mediterranean marine broodfish held under intensive culture conditions: a case report. Bulletin of the European Association of Fish Pathologists 21, 3336.Google Scholar
Roberts, T., Murrell, K. D. and Marks, S. (1994). Economic losses caused by foodborne parasitic diseases. Parasitology Today 10, 419423.Google Scholar
Robledo, J. A. F., Caceres-Martinez, J. and Figueras, A. (1994 a). Myticola intestinalis and Proctoeces maculatus in mussel (Mytilus galloprovincialis Lmk.) beds in Spain. Bulletin of the European Association of Fish Pathologists 14, 8991.Google Scholar
Robledo, J. A. F. and Figueras, A. (1995). The effects of culture-site, depth, season and stock source on the prevalence of Marteilia refringens in cultured mussels (Mytilus galloprovincialis LMK.) from Galicia, Spain. Journal of Parasitology 81, 354363.Google Scholar
Robledo, J. A. F., Santarém, M. M. and Figueras, A. (1994 b). Parasite loads of rafted blue mussels (Mytilus galloprovincialis) in Spain with special reference to the copepod, Mytilicola intestinalis . Aquaculture 127, 287302.Google Scholar
Robledo, J. A. F., Santarém, M. M., González, P. and Figueras, A. (1995). Seasonal variations in the biochemical composition of the serum of Mytilus galloprovincialis Lmk. and its relationship to the reproductive cycle and parasitic load. Aquaculture 133, 311322.Google Scholar
Rodger, H. D. and McArdle, J. F. (1996). An outbreak of amoebic gill disease in Ireland. Veterinary Record 139, 348349.Google Scholar
Rodger, H. D., Turnbull, T., Scullion, F. T., Sparrow, D. and Richards, R. H. (1995). Nervous mortality syndrome in farmed Atlantic salmon. Veterinary Record 137, 616617.Google Scholar
Ronquillo, I. A. and Caces-Borja, P. (1960). Notes on the infestation of Chanos chanos by a parasitic isopod. Philippines Journal of Fisheries 8, 113117. Reprinted 1975. National Bangos Symposium, 25–26 July 1975, Manila, Philippines, Symp. Pap., SEAFDEC, Makati, Philippines, 3 pp.Google Scholar
Roth, M. (2000). The availability and use of chemotherapeutic sea lice control products. Contributions to Zoology 69, 109118.Google Scholar
Rough, K. M., Lester, R. J. G. and Reuter, R. E. (1999). Caligus elongatus a significant parasite of cultured southern bluefin tuna Thunnus maccoyii. World Aquaculture 99, 26th April–2nd May 1999, Sydney. World Aquaculture Society, p. 655.Google Scholar
Rozas, M. (2011). Descripción patológica y epidemiológica de Amoebic Gill Disease (AGD) en salmón del Atlántico, Salmo salar, en Chile. Tesis de Magister en Ciencias Veterinarias. Universidad Austral de Chile, Valdivia.Google Scholar
Rozas, M. and Asencio, G. (2007). Evaluación de la situación epidemiológica de Caligiasis en Chile: hacia una estrategia de control efectiva. Salmociencia 2, 4359.Google Scholar
Sadek, S. (2011). An overview on desert aquaculture in Egypt. In Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities. FAO Technical Workshop. 6–9 July 2010, Hermosillo, Mexico. FAO Fisheries and Aquaculture Proceedings No. 20 (ed. Crespi, V. and Vovatelli, A.), pp. 141158. FAO, Rome.Google Scholar
Sahul Hameed, A. S. (1995). Mortality of larvae of Penaeus indicus due to the infestation of Nitzschia closterium in a hatchery. Journal of Aquaculture in the Tropics 10, 337342.Google Scholar
Sahul Hammed, A. S. (1996). Mortality in protozoea and mysis of Penaeus indicus and P. semisulcatus by Leptomonas like parasite in the hatcheries. Indian Journal of Fisheries 43, 389391.Google Scholar
Sakaguchi, S. (1968 a). Studies on the life history of the trematode parasitic in the pearl oyster, Pinctada fucata, and on the hindrance for pearl culture. Bulletin of the National Pearl Research Laboratory 13, 16351688 [In Japanese, English summary].Google Scholar
Sakaguchi, S. (1968 b). Studies on a trematode parasitic of the pearl oyster II: its effects on the pearl oyster as the intermediate host. Bulletin of the National Pearl Research Laboratory 9, 11611169 [In Japanese, English summary].Google Scholar
Saksvik, M., Nilsen, F., Nylund, A. and Berland, B. (2001). Effect of marine Eubothrium sp. (Cestoda: Pseudophyllidea) on the growth of Atlantic salmon, Salmo salar L. Journal of Fish Diseases 24, 111119.Google Scholar
Sanil, N. K., Vikas, P. A., Ratheesh, T. B., George, K. C. and Vijayan, K. K. (2009). Mortalities caused by the crustacean isopod, Cirolana fluviatilis, in tropical, cage-cultured Asian seabass, Lates calcarifer: a case study from the southwest coast of India. Aquaculture Research 40, 16261633.Google Scholar
Sano, M., Sata, J. and Yokoyama, H. (1998). Occurrence of Beko disease caused by Microsporidium seriolae (Microspora) in hatchery-reared juvenile yellowtail. Fish Pathology 33, 1116.Google Scholar
Sanz, F. (1992). Mortality of cultured sea bream (Sparus aurata) caused by an infection with a trematode of the genus Microcotyle . Bulletin of the European Association of Fish Pathologists 12, 186188.Google Scholar
Šarušic, G. (1999). Preliminary report of infestation by isopod Ceratothoa oestroides (Risso, 1826), in marine cultured fish. Bulletin of the European Association of Fish Pathologists 19, 110112.Google Scholar
Sato-Okoshi, W., Okoshi, K., Abe, H. and Li, J. Y. (2012). Polydorid species (Polychaeta: Spionidae) associated with commercially important mollusk shells in Korean waters. Aquaculture 350–353, 8290.Google Scholar
Sato-Okoshi, W., Okoshi, K., Abe, H. and Li, J. Y. (2013). Polydorid species (Polychaeta, Spionidae) associated with commercially important mollusk shells from eastern China. Aquaculture 406–407, 153159.Google Scholar
Sayuthi, S. (1993). Fish diseases in Malaysia: status and problems. In Proceedings of the Aquaculture Workshop for SEAFDEC/AQD Training Alumni, Iloilo, Philippines, 8–11 September 1992.Google Scholar
Scheibling, R. E. and Stephenson, R. L. (1984). Mass mortality of Strongylocentrotus droebachiensis (Echinodermata: Echinoidea) off Nova Scotia, Canada. Marine Biology 78, 153164.Google Scholar
Schipp, G., Bosmans, J. and Humphrey, J. (2007). Northern Territory Barramundi Farming Handbook. Department of Primary Industry, Fisheries and Mines, Northern Territory Government, Australia. ISBN 0 7245 4727 4, 80 pp.Google Scholar
Scullion, F. T., Scullion, M. G., Sparrow, D., Rodger, H. D. and Sheahan, B. J. (1996). Encephalitis and mass mortality of farmed salmon smolts in an isolated sea bay in Ireland. Veterinary Record 138, 161162.Google Scholar
Shaw, R. and Opitz, M. (1993). Preliminary results on sea lice in the Maine aquaculture industry. Bulletin of the Aquaculture Association of Canada 93/94, 102104.Google Scholar
Shi, L. and Wang, J. (2001). Biochemical and immunological characterization of excretory-secretory products of Vesicocoelium solenophagum and plasma proteins of its bivalve host, Sinonovacula constricta . Journal of Helminthology 75, 279284.Google Scholar
Shimokawa, J., Yoshinaga, T. and Ogawa, K. (2010). Experimental evaluation of the pathogenicity of Perkinsus olseni in juvenile Manila clams Ruditapes philippinarum . Journal of Invertebrate Pathology 105, 347351.Google Scholar
Shinn, A. P. and Bron, J. E. (2012). Chapter 8: Considerations for the use of anti-parasitic drugs in aquaculture. In Infectious Disease in Aquaculture (ed. Austin, B.), pp. 190217. Woodhead Publishing Ltd., Cambridge, UK.Google Scholar
Shirakashi, S., Morita, A., Ishimaru, K. and Miyashita, S. (2012). Infection dynamics of Kudoa yasunagai (Myxozoa: Multivalvulida) infecting brain of cultured yellowtail Seriola quinqueradiata in Japan. Diseases of Aquatic Organisms 101, 123130.Google Scholar
Sievers, G., Lobos, C., Inostroza, R. and Ernst, S. (1996). The effect of the isopod parasite Ceratothoa gaudichaudii on the body weight of farmed Salmo salar in southern Chile. Aquaculture 143, 16.Google Scholar
Silphaduang, U., Hatai, K., Wada, S. and Noga, E. (2000). Cladosporiosis in a tomato clownfish (Amphiprion frenatus). Journal of Zoo and Wildlife Medicine 31, 259261.Google Scholar
Simon, C. A., Bentley, M. G. and Caldwell, G. S. (2010). 2, 4-decadienal: exploring a novel approach for the control of polychaete pests on cultured abalone. Aquaculture 310, 5260.Google Scholar
Simon, C. A., Ludford, A. and Wynne, S. (2006). Spionid polychaetes infesting cultured abalone Haliotis midae in South Africa. African Journal of Marine Science 28, 167171.Google Scholar
Sinderman, C. J. (1976). Oyster mortalities and their control. FAO Technical Conference on Aquaculture, Kyoto, Japan, 25 pp.Google Scholar
Sinnott, R. (1998). Sea lice – watch out for the hidden costs. Fish Farmer 21, 4546.Google Scholar
Sitjà-Bobadilla, A. and Alvarez-Pellitero, P. (1990). First report of Ichthyophonus disease in wild and cultured sea bass Dicentrarchus labrax from the Spanish Mediterranean area. Diseases of Aquatic Organisms 8, 145150.Google Scholar
Sitjà-Bobadilla, A. and Alvarez-Pellitero, P. (1992). Light and electron microscopic description of Sphaerospora dicentrarchi n. sp. (Myxosporea: Sphaerosporidae) from wild and cultured sea bass (Dicentrarchus labrax L.). Journal of Protozoology 39, 273281.Google Scholar
Sitjà-Bobadilla, A. and Alvarez-Pellitero, P. (2001). Cryptosporidium sp. (Apicomplexa: Cryptosporidiidae), an ubiquitous parasite in gilthead sea bream (Sparus aurata): epidemiological survey in Spanish cultures. Tenth International Conference of the EAFP on Diseases of Fish and Shellfish. Book of Abstracts. Dublin, Ireland, pp. O–52.Google Scholar
Siva Kumari, J. and Ramesh Babu, K. (2001). Heavy mortalities in larvae of Penaeus monodon in hatcheries of Kakinada and Visakhapatnam coasts due to Fusarium and Vibriosis. Journal of the Marine Biological Association of India 43, 202205.Google Scholar
Smolowitz, R., Leavitt, D. and Perkins, F. (1998). Observations of a protistan disease similar to QPX in Mercenaria mercenaria hard clams from the coast of Massachusetts. Journal of Invertebrate Pathology 71, 925.Google Scholar
Soares, F., Quental-Ferreira, H., Moreira, M., Cunha, E., Ribeiro, L. and Pousão-Ferreira, P. (2012). First report of Amyloodinium ocellatum in farmed meagre (Argyrosomus regius). Bulletin of the European Association of Fish Pathologists 32, 3033.Google Scholar
Somga, J. R., Somga, S. S. and Reantaso, M. B. (2002). Impacts of disease on small-scale grouper culture in the Philippines, pp. 207–214. In Primary Aquatic Animal Health Care in Rural, Small-Scale, Aquaculture Development. FAO Fisheries Technical Paper No. 406 (ed. Arthur, J. R., Phillips, M. J., Subasinghe, R. P., Reantaso, M. B. and MacRae, I. H.). FAO, Rome.Google Scholar
Sousa, R., Antunes, C. and Guilhermino, L. (2008 a). Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie – International Journal of Limnology 44, 8594.Google Scholar
Sousa, R., Nogueira, A. J., Gaspar, M. B., Antunes, C. and Guilhermino, L. (2008 b). Growth and extremely high production of the non-indigenous invasive species Corbicula fluminea (Müller, 1774): possible implications for ecosystem functioning. Estuarine, Coastal and Shelf Science 80, 289295.Google Scholar
Sousa, R., Rufino, M., Gaspar, M., Antunes, C. and Guilhermino, L. (2008 c). Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 18, 98110.Google Scholar
Speare, D. J., Brackett, J. and Ferguson, H. W. (1989). Sequential pathology of the gills of coho salmon with a combined diatom and microsporidian gill infection. Canadian Veterinary Journal 30, 571575.Google Scholar
Steinum, T., Kvellestad, A., Rønneberg, L. B., Nilsen, H., Asheim, A., Fjell, K., Nygård, S. M. R., Olsen, A. B. and Dale, O. B. (2008). First cases of amoebic gill disease (AGD) in Norwegian seawater farmed Atlantic salmon, Salmo salar L., and phylogeny of the causative amoeba using 18S cDNA sequences. Journal of Fish Diseases 31, 205214.Google Scholar
Stephens, F. J. and Savage, A. (2010). Two mortality events in sea-caged yellowtail kingfish Seriola lalandi Valenciennes, 1833 (Nannopercidae) from Western Australia. Australian Veterinary Journal 88, 414416.Google Scholar
Sterud, E., Hansen, M. K. and Mo, T. A. (2000). Systemic infection with Uronema-like cilates in farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 23, 3337.Google Scholar
Sterud, E., Simolin, P. and Kvellestad, A. (2003). Infection by Parvicapsula sp. (Myxozoa) is associated with mortality in sea-caged Atlantic salmon Salmo salar in northern Norway. Diseases of Aquatic Organisms 54, 259263.Google Scholar
Sugiyama, A., Yokoyama, H. and Ogawa, K. (1999). Epizootiological investigation on kudoosis amami caused by Kudoa amamiensis (Multivalvulida: Myxozoa) in Okinawa Prefecture, Japan. Fish Pathology 34, 3943.Google Scholar
Sunila, I. and LaBanca, J. (2003). Apoptosis in the pathogenesis of infectious diseases of the eastern oyster Crassostrea virginica . Diseases of Aquatic Organisms 56, 163170.Google Scholar
Sunila, I., Williams, L., Russo, S. and Getchis, T. (2004). Reproduction and pathology of blue mussels, Mytilus edulis (L.) in an experimental longline in Long Island Sound, Connecticut. Journal of Shellfish Research 23, 731740.Google Scholar
Supamattaya, K., Fischer-Scherl, T., Hoffmann, R. W. and Boonyaratpalin, S. (1990). Renal sphaerosporosis in cultured grouper Epinephelus malabaricus . Diseases of Aquatic Organisms 8, 3538.Google Scholar
Suzuki, H. and Matsutani, T. (2009). Infection of the parasitic copepod, Pectenophilus ornatus on juvenile Japanese scallops, Patinopecten yessoensis . Suisan Zoshoku 57, 513514.Google Scholar
Tallaksen, E. (2013). Salmon farms rushing to slaughter 8,000 t fish due to high lice levels. Undercurrent News (2nd October). http://www.undercurrentnews.com/2013/10/02/salmon-farms-rushing-to-slaughter-8000t-fish-due-to-high-lice-levels/ Google Scholar
Tan, C. K. F., Nowak, B. F. and Hodson, S. L. (2002). Biofouling as a reservoir of Neoparamoeba pemaquidensis (Page, 1970), the causative agent of amoebic gill disease in Atlantic salmon. Aquaculture 210, 4958.Google Scholar
Ternengo, S., Agostini, S., Quilichini, Y., Euzet, L. and Marchand, B. (2010). Intensive infestations of Sciaenocotyle pancerii (Monogenea, Microcotylidae) on Argyrosomus regius (Asso) under fish-farming conditions. Journal of Fish Diseases 33, 8992.Google Scholar
Ternengo, S. and Katharios, P. (2008). Microcotylid parasites: an emerging problem in Mediterranean cage aquaculture. Fish Farming Expert 5, 4448.Google Scholar
Thébault, A., Baud, J. P., Le Saux, J. C., Le Roux, F., Chollet, B., Le Coguic, M. J., Fleury, P. G., Berthe, F. and Gerard, A. (1999). Compte rendu sur les mortalité de juillet 1999 des moules (Mytilus edulis) en poches dans l'Aber Benoît. Rapport IFREMER, 12 p.Google Scholar
Toksen, E., Buchmann, K. and Bresciani, J. (2007). Occurrence of Benedenia sciaenae van Beneden, 1856 (Monogenea: Capsalidae) in cultured meagre (Argyrosomus regius Asso, 1801) (Teleost: Sciaenidae) from western Turkey. Bulletin of the European Association of Fish Pathologists 27, 250253.Google Scholar
Tomiyama, T., Watanabe, M. and Fujita, T. (2008). Community-based stock enhancement and fisheries management of the Japanese flounder in Fukushima, Japan. Reviews in Fisheries Science 16, 146153.Google Scholar
Torchin, M. E., Lafferty, K. D. and Kuris, A. M. (2002). Parasites and marine invasions. Parasitology 124, 137151.Google Scholar
Torgerson, P. R. and MacPherson, C. N. L. (2011). The socioeconomic burden of parasitic zoonoses: global trends. Veterinary Parasitology 182, 7995.Google Scholar
Tripp, M. R. (1973). Hermaphroditism in Bucephalus-infected oysters. Journal of Invertebrate Pathology 21, 321322.Google Scholar
Trottier, O. and Jeffs, A. G. (2012). Biological characteristics of parasitic Nepinnotheres novazelandiae within a Perna canaliculus farm. Diseases of Aquatic Organisms 101, 6168.Google Scholar
Trottier, O., Walker, D. and Jeffs, A. G. (2012). Impact of the parasitic pea crab Pinnotheres novazelandiae on aquacultured New Zealand green-lipped mussels, Perna canaliculus . Aquaculture 344, 2329.Google Scholar
Tully, O. (1989). The succession of generations and growth of the caligid copepod Caligus elongatus and Lepeophtheirus salmonis parasitising farmed Atlantic salmon smolts (Salmo salar L.). Journal of the Marine Biological Association of the UK 69, 279287.Google Scholar
Tun, K. L., Itoh, N., Shimizu, Y., Yamanoi, H., Yoshinaga, T. and Ogawa, K. (2008). Pathogenicity of the protozoan parasite Marteilioides chungmuensis in the Pacific oyster Crassostrea gigas . International Journal for Parasitology 38, 211217.Google Scholar
Tun, T., Ogawa, K. and Wakabayashi, H. (2002). Pathological changes induced by three myxosporeans in the intestine of cultured tiger puffer, Takifugu rubripes (Temminck and Schlegel). Journal of Fish Diseases 25, 6372.Google Scholar
Tun, T., Yokoyama, H., Ogawa, K. and Wakabayashi, H. (2000). Myxosporeans and their hyperparasitic microsporeans in the intestine of emaciated tiger puffer. Fish Pathology 35, 145156.Google Scholar
Tuntiwaranuruk, C., Chalermwat, K., Upatham, E. S., Kruatrachue, M. and Azevedo, C. (2004). Investigation of Nematopsis spp. oocysts in 7 species of bivalves from Chonburi Province, Gulf of Thailand. Diseases of Aquatic Organisms 58, 4753.Google Scholar
Uddin, M. J., Yasin, Z., Khalil, M. and Shau-Hwai, A. T. (2011). Parasites of blood cockle (Anadara granosa Linnaeus, 1758) from the Straits of Malacca. Journal of Shellfish Research 30, 875880.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2012). World population 2012. http://www.un.org/en/development/desa/population/publications/pdf/trends/WPP2012_Wallchart.pdf Google Scholar
Urawa, S. (1993). Effects of Ichthyobodo necator infections on seawater survival of juvenile chum salmon (Oncorhynchus keta). Aquaculture 110, 101110.Google Scholar
Urawa, S. (1995). Marine mortality of chum salmon (Oncorhynchus keta) caused by the parasitic flagellate Ichthyobodo necator. NPAFC Doc. 147, 7 pp. Research Division, Hokkaido Salmon Hatchery, Fisheries Agency of Japan, Toyohira-ku, Sapporo 062, Japan.Google Scholar
Urawa, S. and Kato, T. (1991). Heavy infections of Caligus orientalis (Copepoda: Caligidae) on caged rainbow trout Oncorhynchus mykiss in brackish water. Fish Pathology [Gyobyo Keokyug] 26, 161162.Google Scholar
Urawa, S., Kato, T. and Kumagai, A. (1998 a). A status of Lepeophtheirus salmonis (Copepoda: Caligidae) on seawater-cultured coho salmon (Oncorhynchus kisutch) and rainbow trout (O. mykiss) in Japan. Bulletin of the National Salmon Resources Center 1, 3538.Google Scholar
Urawa, S. and Kusakari, M. (1990). The survivability of the ectoparasitic flagellate Ichthyobodo necator on chum salmon fry (Oncorhynchus keta) in seawater and comparison to Ichthyobodo sp. on Japanese flounder (Paralichthys olivaceus). Journal of Parasitology 76, 3340.Google Scholar
Urawa, S., Ueki, N. and Karlsbakk, E. (1998 b). A review of Ichthyobodo infection in marine fishes. Fish Pathology 33, 311320.Google Scholar
Urawa, S., Ueki, N., Nakai, T. and Yamasaki, H. (1991). High mortality of cultured juvenile Japanese flounder, Paralichthys olivaceus (Temminck and Schlegel), caused by the parasite flagellate, Ichthyobodo sp. Journal of Fish Diseases 14, 489494.Google Scholar
Utari, H. B., Senapin, S., Jaengsanong, C., Flegel, T. W. and Kruatrachue, M. (2012). A haplosporidian parasite associated with high mortality and slow growth in Penaeus (Litopenaeus) vannamei cultured in Indonesia. Aquaculture 366–367, 8589.Google Scholar
Vagianou, S., Athanassopoulou, F., Ragias, V., Di Cave, D., Leontides, L. and Golomazou, E. (2006). Prevalence and pathology of ectoparasites of Mediterranean sea bream and sea bass reared under different environmental and aquaculture conditions. Bamidgeh 58, 7888.Google Scholar
Valencia, V. and George-Nascimento, M. (2013). Farming systems as an ecological refuge against the parasitism by Edotia doellojurdoi (Isopoda: Idoteidae) on Mytilus edulis (Mollusca: Mytilidae) in Aysén, Chile. Revista Chilena de Historia Natural 86, 153159.Google Scholar
Vass, S. (2013). Gill disease to cost salmon farmers £30 m. Herald Scotland (online), 19th January 2013. http://www.heraldscotland.com/business/markets-economy/gill-disease-to-cost-salmon-farmers-30m.19956340 Google Scholar
Velasquez, C. C. (1979). Pest/parasites and diseases of milkfish in the Philippines, p. 65–67. In Proceedings Technical Consultation on Available Aquaculture Technology in the Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo City, and Philippine Council for Agriculture and Resources Research, Los Baños, Laguna, Philippines. Also published in Advances in Milkfish Biology and Culture (ed. Juario, J. V., Ferraris, R. P. and Benitez, L. V.), pp. 155159. Island Publishing House, Manila, Philippines, Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines and International Development Research Centre, Ottawa, Canada (1984).Google Scholar
Velayudhan, T. S. (1982). On the occurrence of shell boring polychaetes and sponges on pearl oyster Pinctada fucata and control of boring organisms. Proceedings of the Symposium on Coastal Aquaculture 2, 614618.Google Scholar
Venmathi Maran, B. A., Oh, S.-Y., Soh, H. Y., Choi, H. J. and Myoung, J.-G. (2012). Caligus sclerotinosus (Copepoda: Caligidae), a serious pest of cultured red seabream Pagrus major (Sparidae) in Korea. Veterinary Parasitology 188, 355361.Google Scholar
Vidal-Martínez, V., Jiménez, A. and Simá, R. (2002). Parasites and symbionts of native and cultured shrimps from Yucatan, Mexico. Journal of Aquatic Animal Health 14, 5764.Google Scholar
Villalba, A. (1993). Marteiliasis affecting cultured mussels Mytilus galloprovincialis of Galicia (NW Spain). Etiology, phases of the infection, and temporal and spatial variability in prevalence. Diseases of Aquatic Organisms 16, 6172.Google Scholar
Villalba, A., Mourelle, S. G., Carballal, M. J. and Lopez, C. (1993). Effects on infection by the protistan parasite Marteilia refringens on the reproduction of cultured mussels Mytilus galloprovincialis in Galicia (NW Spain). Diseases of Aquatic Organisms 17, 205213.Google Scholar
Villalba, A., Mourelle, S. G., Carballal, M. J. and Lopez, C. (1997). Symbionts and diseases of farmed mussels Mytilus galloprovincialis throughout the culture process in the Rías of Galicia (NW Spain). Diseases of Aquatic Organisms 31, 127139.Google Scholar
Vohmann, A., Borcherding, J., Kureck, A., Bij de Vaate, A., Arndt, H. and Weitere, M. (2010). Strong body mass decrease of the invasive clam Corbicula fluminea during summer. Biological Invasions 12, 5364.Google Scholar
Voort van der, M., Charlier, J., Lauwers, L., Vercruysse, J., Huylenbroeck Van, G. and Van Meensel, J. (2013). Conceptual framework for analysing farm-specific economic effects of helminth infections in ruminants and control strategies. Preventive Veterinary Medicine 109, 228235.Google Scholar
Wang, Y.-G., Zhang, C.-Y., Rong, X.-J., Chen, J.-J. and Shi, C.-Y. (2004). Diseases of cultured sea cucumber, Apostichopus japonicus, in China. FAO Fisheries Technical Paper 463, 297310.Google Scholar
Watanabe, W. O. and Daniels, H. (2011). Chapter 18: Summary and conclusions. In Practical Flatfish Culture and Stock Enhancement (ed. Daniels, H. V. and Watanabe, W. O.), pp. 323357. Wiley Blackwell, Iowa, USA.Google Scholar
Werner, S. and Rothhaupt, K. O. (2008). Mass mortality of the invasive bivalve Corbicula fluminea induced by a severe low-water event and associated low water temperatures. Hydrobiologia 613, 143150.Google Scholar
Wesche, S. J. (1995). Outbreaks of Marteilia sydneyi in Sydney rock oysters and their relationship with environmental pH. Bulletin of the European Association of Fish Pathologists 15, 2327.Google Scholar
West, A. P. and Roubal, F. R. (1998). Population dynamics of the monogenean Anoplodiscus cirrusspiralis on the snapper, Pagrus auratus . International Journal for Parasitology 28, 571577.Google Scholar
Whitaker, D. J. and Kent, M. L. (1991). Myxosporean Kudoa thyrsites: a cause of soft flesh in farm-reared Atlantic salmon. Journal of Aquatic Animal Health 3, 291294.Google Scholar
Whitaker, D. J. and Kent, M. L. (1992). Kudoa thyrsites (Myxosporea) and soft flesh in pen-reared coho salmon. American Fisheries Society/Fish Health Sector Newsletter 20, 45.Google Scholar
White, M. E., Powell, E. N., Ray, S. M. and Wilson, E. A. (1987). Host-to-host transmission of Perkinsus marinus in oyster (Crassostrea virginica) populations by the ectoparasitic snail Boonea impressa (Pyramidellidae). Journal of Shellfish Research 6, 15.Google Scholar
Whittington, I. D., Corneillie, S., Talbot, C., Morgan, J. A. T. and Adlard, R. D. (2001). Infections of Seriola quinqueradiata Temminck & Schlegel and S. dumerili (Risso) in Japan by Benedenia seriolae (Monogenea) confirmed by morphology and 28S ribosomal DNA analysis. Journal of Fish Diseases 24, 421425.Google Scholar
Wilbur, A. E., Ford, S. E., Gauthier, J. D. and Gomez-Chiarri, M. (2012). Quantitative PCR analysis to determine prevalence and intensity of MSX (Haplosporidium nelsoni) in North Carolina and Rhode Island oysters Crassostrea virginica . Diseases of Aquatic Organisms 102, 107118.Google Scholar
Williams, E. H. and Bunkley-Williams, L. (1996). Parasites of Offshore Big Game Fishes of Puerto Rico and the Western Atlantic. Puerto Rico Department of Natural Environmental Resources and the University of Puerto Rico, Mayaguez.Google Scholar
Williams, E. H. Jr., Bunkley-Williams, L., Lilyestrom, C. G. and Ortiz-Corps, E. A. R. (2001). A review of recent introductions of aquatic invertebrates in Puerto Rico and implications for the management of nonindigenous species. Caribbean Journal of Science 37, 246251.Google Scholar
Woo, P. T. K. (2006). Fish Diseases and Disorders. Volume 1: Protozoan and Metazoan Infections, 2nd Edn. CABI, Wallingford, UK, p. 800.Google Scholar
Xu, W., Sheng, X., Xu, H., Shi, H. and Li, P. (2007 a). Dinoflagellates Hematodinium sp. parasitizing the mud crab Scylla serrata . Periodical of Ocean University of China 37, 916920.Google Scholar
Xu, W., Shi, H., Xu, H. and Small, H. J. (2007 b). Preliminary study on the Hematodinium infection in cultured Portunus trituberculatus . Acta Hydrobiologica Sinica 31, 637642.Google Scholar
Yanagida, T., Freeman, M. A., Nomura, Y., Takami, I., Sugihara, Y., Yokoyama, H. and Ogawa, K. (2005). Development of a PCR-based method for the detection of enteric myxozoans causing the emaciation disease of cultured tiger puffer. Fish Pathology 40, 2328.Google Scholar
Yap, W. G., Villaluz, A. C., Soriano, M. G. G. and Santos, M. N. (2007). Milkfish production and processing technologies in the Philippines. Milkfish Project Publication Series No. 2, 96 pp.Google Scholar
Yokoyama, H., Ayado, D., Miyahara, J., Matsukura, K., Takami, I., Yokoyama, F. and Ogawa, K. (2011). Infection dynamics of Microsporidium seriolae (Microspora) causing Beko disease of Seriola spp. Fish Pathology 46, 5158.Google Scholar
Yokoyama, H., Freeman, M. A., Itoh, N. and Fukuda, Y. (2005 a). Spinal curvature of cultured Japanese mackerel Scomber japonicus associated with a brain myxosporean, Myxobolus acanthogobii . Diseases of Aquatic Organisms 66, 17.Google Scholar
Yokoyama, H. and Fukuda, Y. (2001). Ceratomyxa seriolae n. sp. and C. buri n. sp. (Myxozoa: Myxosporea) from the gall-bladder of cultured yellowtail Seriola quinqueradiata . Systematic Parasitology 48, 125130.Google Scholar
Yokoyama, H., Itoh, N. and Tanaka, S. (2005 b). Henneguya pagri n. sp. (Myxozoa: Myxosporea) causing cardiac henneguyosis in red sea bream, Pagrus major (Temminck & Schlegel). Journal of Fish Diseases 28, 479487.Google Scholar
Yokoyama, H., Yanagida, T., Freeman, M. A., Katagiri, T., Hosokawa, A., Endo, M., Hirai, M. and Takagi, S. (2010). Molecular diagnosis of Myxobolus spirosulcatus associated with encephalomyelitis of cultured yellowtail, Seriola quinqueradiata Temminck & Schlegel. Journal of Fish Diseases 33, 939946.Google Scholar
Yokoyama, H., Yanagida, T. and Takemaru, I. (2006). The first record of Kudoa megacapsula (Myxozoa: Multivalvulida) from farmed yellowtail Seriola quinqueradiata originating from wild seedlings in South Korea. Fish Pathology 41, 159163.Google Scholar
Yoon, G. H. (2008). Aquaculture in Korea. Aquaculture News 34, 1617.Google Scholar
Yoon, G. H., Shinn, A. P., Sommerville, C. and Jo, J. Y. (1997). Seasonality and the microhabitat of Microcotyle sebastis Goto 1894, a monogenean gill parasite of farmed rockfish, Sebastes schlegeli Hilgendorf 1880. Korean Journal of Aquaculture 10, 387394.Google Scholar
Yoshinaga, T. and Nakazoe, J.-I. (1993). Isolation and in vitro cultivation of an unidentified ciliate causing scuticociliatosis in Japanese flounder (Paralichthys olivaceus). Fish Pathology 28, 131134.Google Scholar
You, K., Ma, C., Gao, H., Li, F., Zhang, M., Qiu, Y. and Wang, B. (2007). Research on the jellyfish (Rhopilema esculentum Kishinouye) and associated aquaculture techniques in China: current status. Aquaculture International 15, 479488.Google Scholar
Zanguee, N., Lymbery, J. A., Lau, J., Suzuki, A., Yang, R., Ng, J. and Ryan, U. (2010). Identification of novel Cryptosporidium species in aquarium fish. Veterinary Parasitology 174, 4348.Google Scholar
Zrnčić, S., Le Roux, F., Oraić, D., Šoštarić, B. and Berthe, F. C. J. (2001). First record of Marteilia sp. in mussels Mytilus galloprovincialis in Croatia. Diseases of Aquatic Organisms 44, 143148.Google Scholar