Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T00:52:57.689Z Has data issue: false hasContentIssue false

The ecology of Bartonella spp. infections in two rodent communities in the Mazury Lake District region of Poland

Published online by Cambridge University Press:  14 April 2010

RENATA WELC-FALĘCIAK
Affiliation:
Department of Parasitology, Institute of Zoology, University of Warsaw, Miecznikowa 1 Street, 02-096 Warsaw, Poland
ANNA BAJER
Affiliation:
Department of Parasitology, Institute of Zoology, University of Warsaw, Miecznikowa 1 Street, 02-096 Warsaw, Poland
JERZY M. BEHNKE
Affiliation:
School of Biology, University Park, University of Nottingham, Nottingham NG7 2RD, UK
EDWARD SIŃSKI*
Affiliation:
Department of Parasitology, Institute of Zoology, University of Warsaw, Miecznikowa 1 Street, 02-096 Warsaw, Poland
*
*Corresponding author: Department of Parasitology, Institute of Zoology, University of Warsaw, Miecznikowa 1 Street, 02-096 Warsaw, Poland. Tel: +4822 5541113. E-mail: [email protected]

Summary

Prevalence and abundance of Bartonella spp. infections were studied over a 3-year period in woodland and grassland rodents in North-Eastern Poland. Prevalence of bacterial infections was similar in the two rodent communities, with one leading host species in each habitat (46·3% in Apodemus flavicollis versus 29·1% in Myodes glareolus in forest, or 36·9% in Microtus arvalis versus 13·7% in Mi. oeconomus in grassland). Prevalence/abundance of infections varied markedly across the 3 years with 2006 being the year of highest prevalence and abundance. Infections were more common during autumn months in My. glareolus and A. flavicollis, and in juvenile and young adult (age classes 1 and 2) My. glareolus and Mi. oeconomus than in adults (age class 3). Higher prevalence and abundance of Bartonella infections were found in male A. flavicollis in comparison to females. These data are discussed in relation to the parasite genotypes identified in this region and with respect to the role of various ecological factors influencing Bartonella spp. infections in naturally infected host populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bajer, A. (2008). Between-year variation and spatial dynamics of Cryptosporidium spp. and Giardia spp. infections in naturally infected rodent populations. Parasitology 135, 16291649.CrossRefGoogle ScholarPubMed
Bajer, A., Bednarska, M., Pawełczyk, A., Behnke, J. M., Gilbert, F. S. and Siński, E. (2002). Prevalence and abundance of Cryptosporidium parvum and Giardia spp. in wild rural rodents from the Mazury Lake District region of Poland. Parasitology 125, 2134.CrossRefGoogle ScholarPubMed
Bajer, A., Pawełczyk, A., Behnke, J. M., Gilbert, F. S. and Sinski, E. (2001). Factors affecting the component community structure of haemoparasites in bank voles (Clethrionomys glareolus) from the Mazury Lake District region of Poland. Parasitology 122, 4354.CrossRefGoogle ScholarPubMed
Begon, M., Hazel, S. M., Baxby, D., Bown, K., Cavanagh, R., Chantrey, J., Jones, T. and Bennett, M. (1999). Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proceedings of the Royal Society of London, B 266, 19391945.CrossRefGoogle ScholarPubMed
Behnke, J. M., Barnard, C. J., Bajer, A., Bray, D., Dinmore, J., Frake, K., Osmond, J., Race, T. and Siński, E. (2001). Variation in the helminth community structure in bank voles (Clethrionomys glareolus) from three comparable localities in the Mazury Lake District region of Poland. Parasitology 123, 401414.CrossRefGoogle ScholarPubMed
Birtles, R. J., Harrison, T. G. and Molyneux, D. H. (1994). Grahamella in small woodland mammals in the U.K.: isolation, prevalence and host specificity. Annals of Tropical Medicine and Parasitology 88, 317327.CrossRefGoogle ScholarPubMed
Birtles, R. J., Hazel, S. M., Bennett, M., Bown, K., Raoult, D. and Begon, M. (2001). Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. Epidemiology and Infection 126, 323329.CrossRefGoogle ScholarPubMed
Birtles, R. J. and Raoult, D. (1996). Comparison of partial citrate synthase gene (gltA) sequences for phylogenetic analysis of Bartonella species. International Journal of Systematic and Evolutionary Microbiology 46, 891897.Google ScholarPubMed
Boulouis, H. J., Barrat, F., Bermond, D., Bernex, F., Thibault, D., Heller, R., Fontaine, J. J., Piémont, Y. and Chomel, B. B. (2001). Kinetics of Bartonella birtlesii infection in experimentally infected mice and pathogenic effect on reproductive functions. Infection and Immunity 69, 53135317.CrossRefGoogle ScholarPubMed
Bown, K. J., Bennet, M. and Begon, M. (2004). Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerging Infectious Diseases 10, 684687.CrossRefGoogle ScholarPubMed
Bray, D. P., Bown, K. J., Stockley, P., Hurst, J. L., Bennett, M. and Birtles, R. J. (2007). Haemoparasites of common shrews (Sorex araneus) in Northwest England. Parasitology 134, 819826.CrossRefGoogle ScholarPubMed
Breitschwerdt, E. B. and Kordick, D. L. (2000). Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clinical Microbiology Reviews 13, 428438.CrossRefGoogle ScholarPubMed
Cotté, V., Bonnet, S., Le Rhun, D., Le Naour, E., Chauvin, A., Boulouis, H. J., Lecuelle, B., Lilin, T. and Vayssier-Taussat, M. (2008). Transmission of Bartonella henselae by Ixodes ricinus. Emerging Infectious Diseases 14, 10741080.CrossRefGoogle ScholarPubMed
Crawley, M. T. (1993). GLIM for Ecologists. Blackwell, Oxford, UK.Google Scholar
Dash, K. M., Hall, E. and Barger, I. A. (1988). The role of arithmetic and geometric mean worm egg counts in faecal egg count reduction tests and in monitoring strategic drenchina programs in sheep. Australian Veterinary Journal 65, 6668.CrossRefGoogle ScholarPubMed
Elliott, J. M. (1977). Some methods for the statistical analysis of samples of benthic invertebrates. Feshwater Biological Association, Cumbria, UK.Google Scholar
Engbaek, K. and Lawson, P. A. (2004). Identification of Bartonella species in rodents, shrews and cats in Denmark: detection of two B. henselae variants, one in cat and the other in the longtailed field mouse. Acta Pathologica, Microbiologica et Immunologica Scandinavica 112, 336341.CrossRefGoogle Scholar
Fichet-Calvet, E., Jomâa, I., Ben Ismail, R. and Ashford, R. W. (2000). Patterns of infection of haemoparasites in the fat sand rat Psammomys obesus, in Tunisia, and effect on the host. Annals of Tropical Medicine and Parasitology 94, 5568.CrossRefGoogle ScholarPubMed
Healing, T. D. (1981). Infections with blood parasites in the small British rodents Apodemus sylvaticus, Clethrionomys glareolus and Microtus agrestis. Parasitology 83, 179189.CrossRefGoogle ScholarPubMed
Heller, R., Riegel, P., Hansmann, Y., Delacour, G., Bermond, D., Dehio, C., Lamarque, F., Monteil, H., Chomel, B. and Piémont, Y. (1998). Bartonella tribocorum sp. nov., a new Bartonella species isolated from the blood of wild rats. International Journal of Systematic and Evolutionary Microbiology 48, 13331339.Google Scholar
Hofmeister, E. K., Kolbert, C. P., Abdulkarim, A. S., Magera, J. M., Hopkins, M. K., Uhl, J. R., Ambyaye, A., Telford, S. R. 3rd, Cockerill, F. R. 3rd and Persing, D. H. (1998). Cosegregation of a novel Bartonella species with Borrelia burgdorferi and Babesia microti in Peromyscus leucopus. Journal of Infectious Diseases 177, 409416.CrossRefGoogle ScholarPubMed
Holmberg, M., Mills, J. N., McGill, S., Benjamin, G. and Ellis, B. A. (2003). Bartonella infection in sylvatic small mammals of central Sweden. Epidemiology and Infection 130, 149157.CrossRefGoogle ScholarPubMed
Jardine, C., Appleyard, G., Kosoy, M. Y., McColl, D., Chirino-Trejo, M., Wobeser, G. and Leighton, F. A. (2005). Rodent-associated Bartonella in Saskatchewan, Canada. Vector Borne and Zoonotic Diseases 5, 402409.CrossRefGoogle ScholarPubMed
Kerkhoff, F. T., Bergmans, A. M., van Der Zee, A. and Rothova, A. (1999). Demonstration of Bartonella grahamii DNA in ocular fluids of a patient with neuroretinitis. Journal of Clinical Microbiology 37, 40344038.CrossRefGoogle ScholarPubMed
Knap, N., Duh, D., Birtles, R., Trilar, T., Petrovec, M. and Avsic-Zupanc, T. (2007). Molecular detection of Bartonella species infecting rodents in Slovenia. FEMS Immunology and Medical Microbiology 50, 4550.CrossRefGoogle ScholarPubMed
Kosoy, M., Mandel, E., Green, D., Marston, E. and Childs, J. (2004). Prospective studies of Bartonella of rodents. Part I. Demographic and temporal patterns in population dynamics. Vector Borne Zoonotic Diseases 4, 285295.CrossRefGoogle ScholarPubMed
Kosoy, M. Y., Regnery, R. L., Kosaya, O. I., Jones, D. C., Marston, E. L. and Childs, J. E. (1998). Isolation of Bartonella spp. from embryos and neonates of naturally infected rodents. Journal of Wildlife Diseases 34, 305309.CrossRefGoogle ScholarPubMed
Kosoy, M. Y., Regnery, R. L., Tzianabos, T., Marston, E. L., Jones, D. C., Green, D., Maupin, G. O., Olson, J. G. and Childs, J. E. (1997). Distribution, diversity, and host specificity of Bartonella in rodents from the Southeastern United States. The American Journal of Tropical Medicine and Hygiene 57, 578588.CrossRefGoogle ScholarPubMed
Lummaa, V. and Clutton-Brock, T. (2002). Early development, survival and reproduction in humans. Trends in Ecology and Evolution 17, 141147.CrossRefGoogle Scholar
Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M. and Schad, G. A. (1982). The use of ecological terms in parasitology (report of an ad hoc committee of The American Society of Parasitologists). Journal of Parasitology 68, 131133.CrossRefGoogle Scholar
Morris, P. (1972). A review of mammalian age determination methods. Mammal Review 2, 69–104.CrossRefGoogle Scholar
Norman, A. F., Regnery, R., Jameson, P., Greene, C. and Krause, D. C. (1995). Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. Journal of Clinical Microbiology 33, 17971803.CrossRefGoogle ScholarPubMed
Pawełczyk, A. (2003). Rola dziko żyjacych gryzoni w utrzymywaniu w przyrodzie zrodel infekcji Borrelia burgdorferi sensu lato. Ph.D. thesis, Department of Parasitology, University of Warsaw, Warsaw, Poland.Google Scholar
Pawełczyk, A., Bajer, A., Behnke, J. M., Gilbert, F. S. and Siński, E. (2004). Factors affecting the component community structure of haemoparasites in common voles (Microtus arvalis) from the Mazury Lake District region of Poland. Parasitology Research 92, 270284.CrossRefGoogle ScholarPubMed
Pucek, Z., Ryszkowski, L. and Zejda, J. (1970). Estimation of average length of life in bank vole Clethrionomys glareolus (Schreber, 1780). In Energy Flow Through Small Mammal Populations (ed. Petrusewicz, K. and Ryszkowski, P.), pp. 187201. Państwowe Wydawnictwo Naukowe, Warsaw, Poland.Google Scholar
Rohlf, F. J. and Sokal, R. R. (1995). Statistical Tables. 3rd Edn.W.H. Freeman and Company, San Francisco, CA, USA.Google Scholar
Seubert, A., Schulein, R. and Dehio, C. (2002). Bacterial persistence within erythrocytes: a unique pathogenic strategy of Bartonella spp. International Journal of Medical Microbiology 291, 555560.CrossRefGoogle ScholarPubMed
Siński, E., Bajer, A., Welc, R., Pawełczyk, A., Ogrzewalska, M. and Behnke, J. M. (2006). Babesia microti: prevalence in wild rodents and Ixodes ricinus ticks from the Mazury Lakes District of North-Eastern Poland. International Journal of Medical Microbiology 296, 137143.CrossRefGoogle ScholarPubMed
Tea, A., Alexiou-Daniel, S., Papoutsi, A., Papa, A. and Antoniadis, A. (2004). Bartonella species isolated from rodents, Greece. Emerging Infectious Diseases 10, 963964.CrossRefGoogle ScholarPubMed
Telfer, S., Begon, M., Bennett, M., Bown, K. J., Burthe, S., Lambin, X., Telford, G. and Birtles, R. (2007 a). Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology 134, 413425.CrossRefGoogle ScholarPubMed
Telfer, S., Clough, H. E., Birtles, L. R., Bennett, M., Carslake, D., Helyar, S. and Begon, M. (2007 b). Ecological differences and coexistence in a guild of microparasites: Bartonella in wild rodents. Ecology 88, 18411849.CrossRefGoogle Scholar
Turner, C. M. (1986). Seasonal and age distributions of Babesia, Hepatozoon, Trypanosoma and Grahamella species in Clethrionomys glareolus and Apodemus sylvaticus populations. Parasitology 93, 279289.CrossRefGoogle ScholarPubMed
Welc-Falęciak, R., Bajer, A., Behnke, J. M. and Siński, E. (2008 b). Effects of host diversity and the community composition of ixodid ticks (Ixodidae) on Babesia microti infection. International Journal of Medical Microbiology 298, 235242.CrossRefGoogle Scholar
Welc-Falęciak, R., Paziewska, A., Bajer, A., Behnke, J. M. and Siński, E. (2008 a). Bartonella spp. infection in rodents from different habitats of Mazury Lakes District, NE Poland. Vector Borne and Zoonotic Diseases 8, 467474.CrossRefGoogle Scholar
Wilson, K. and Grenfell, B. T. (1997). Generalized linear modelling for parasitologists. Parasitology Today 13, 3338.CrossRefGoogle ScholarPubMed
Young, A. S. (1970). Studies on the blood parasites of small mammals with special reference to piroplasms. Ph.D. thesis, University of London, UK.Google Scholar