Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T17:01:13.977Z Has data issue: false hasContentIssue false

Echinococcus granulosus: absorption of cycloleucine and α-aminoisobutyric acid by protoscoleces

Published online by Cambridge University Press:  06 April 2009

S. A. Jeffs
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, Department of Biological Sciences, University of Keele, Keele, Staffs ST5 5BG

Summary

Protoscoleces of Echinococcus granulosus absorb the amino acids cycloleucine and α-aminoisobutyric acid (AIB) by a combination of mediated uptake and diffusion. After correcting for the latter, values for Kt and Vmax of 0·124 mM and 0·947 nmoles/mg protein/2 min for cycloleucine were calculated; corresponding values for AIB were 0·039 mM and 0·139 nmoles/mg protein/2 min. Both amino acids were accumulated against a concentration gradient and a comparison of Kt and Kt values determined in mutual inhibition experiments suggested that both cycloleucine and AIB share a common uptake locus (loci). Cycloleucine uptake was pH-dependent and could be inhibited by a variety of other amino acids. Neither D- nor L-proline inhibited cycloleucine absorption but D-methionine, D-alanine, D-leucine, D-valine and D-serine were much more effective inhibitors than their L-counterparts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosin, M., von Brand, T., Rivera, G. F. & McMahon, P. (1957). Studies on the metabolism of Echinococcus granulosus. I. General chemical composition and respiratory reactions. Experimental Parasitology 6, 3751.CrossRefGoogle Scholar
Anon. (1984). Albendazole: worms and hydatid disease. The Lancet 2 (8404), 675–6.Google Scholar
Arme, C. & Coates, A. (1973). Hymenolepis diminuta: active transport of α-aminoisobutyric acid by cysticercoid larvae. Internal Journal for Parasitology 3, 553–60.CrossRefGoogle ScholarPubMed
Harris, B. G. & Read, C. P. (1968). Studies on membrane transport III. Further characterisation of amino acid systems in Hymenolepis diminuta (Cestoda). Comparative Biochemistry and Physiology 26, 545–52.Google Scholar
Haynes, W. G. (1970). Taenia crassiceps: uptake of basic and aromatic amino acids and imino acids by larvae. Experimental Parasitology 27, 256–61.Google Scholar
Haynes, W. G. & Taylor, A. E. R. (1968). Studies on the absorption of amino acids by larval tapeworms (Cyclophyllidea; Taenia crassiceps). Parasitology 58, 4759.CrossRefGoogle ScholarPubMed
Jeffs, S. A. & Arme, C. (1984). Hymenolepis diminuta: protein synthesis in cysticercoids. Parasitology 88, 351–7.Google Scholar
Jeffs, S. A. & Arme, C. (1985 a). Hymenolepis diminuta (Cestoda): uptake of cycloleucine by metacestodes. Comparative Biochemistry and Physiology 81A, 495–9.Google Scholar
Jeffs, S. A. & Arme, C. (1985 b). Hymenolepis diminuta: characterisation of the neutral amino acid transport loci of the metacestode. Comparative Biochemistry and Physiology 81A, 387–90.CrossRefGoogle Scholar
Kammerer, W. S. & Schantz, P. M. (1984). Long term follow-up of human hydatid disease (Echinococcus granulosus) treated with a high-dose mebendazole regimen. American Journal of Tropical Medicine and Hygiene 33, 132–7.Google Scholar
Kilejian, A. A. (1966). Permeation of L-proline in the cestode, Hymenolepis diminuta. Journal of Parasitology 52, 1108–15.Google Scholar
Laws, G. F. & Read, C. P. (1969). Effect of the amino-carboxy group on amino acid transport in Hymenolepis diminuta. Comparative Biochemistry and Physiology 30, 129–32.CrossRefGoogle Scholar
Lerner, J. & Karcher, C. A. (1978). Kinetic properties of an imino acid transport system in the chicken intestine. Comparative Biochemistry and Physiology 60A, 503–5.Google Scholar
Lineweaver, H. & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society 56, 658–66.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Lussier, P. E., Podesta, R. B. & Mettrick, D. F. (1982). Hymenolepis diminuta: the non-saturable component of methionine uptake. International Journal for Parasitology 12, 265–70.CrossRefGoogle ScholarPubMed
MacInnis, A. J., Graff, D. J., Kilejian, A. A. & Read, C. P. (1976). Specificity of amino acid transport in the tapeworm, Hymenolepis diminuta and its rat host. Rice University Studies 62, 183204.Google Scholar
Matossian, R. M., Rickard, M. D. & Smyth, J. D. (1977). Hydatidosis: a global problem of increasing importance. Bulletin of the World Health Organization 55, 499507.Google ScholarPubMed
Morris, D. L., Dykes, P. W., Dickson, B., Marriner, S. E., Bogan, J. A. & Burrows, F. G. O. (1983). Alberdazole in hydatid disease. British Medical Journal 286, 103–4.CrossRefGoogle ScholarPubMed
Newey, H. & Smyth, D. H. (1964). The transfer system for neutral amino acids in the rat small intestine. Journal of Physiology 170, 328–34.CrossRefGoogle ScholarPubMed
Oxender, D. L. & Christensen, H. N. (1963). Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. Journal of Biological Chemistry 238, 3686–99.Google Scholar
Pappas, P. W. (1983). Structure, function and biochemistry of the cestode tegumentary membrane and associated glycocalyx. In Endocytobiology, vol. 1. Endosymbiosis and Cell Biology (ed. Schwemmler, W. and Schenk, H. E. A.), pp. 586603. New York and London: Walter de Gruyter & Co.Google Scholar
Pappas, P. W. & Gamble, H. R. (1980). Membrane transport of aromatic amino acids by Hymenolepis diminuta (Cestoda). Parasitology 81, 395403.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Read, C. P. (1973). Permeability and membrane transport in the larva of Taenia crassiceps. Parasitology 66, 3342.Google Scholar
Pappas, P. W. & Read, C. P. (1975). Membrane transport in helminth parasites: a review. Experimental Parasitiology 37, 469530.Google Scholar
Read, C. P., Rothman, A. H. & Simmons, J. E. Jr, (1963). Studies on membrane transport, with special reference to parasite-host integration. Annals of the New York Academy of Science 113, 154205.CrossRefGoogle ScholarPubMed
Schantz, P. M., Bossche, H. Van den & Eckert, J. (1982). Chemotherapy for larval echinococcosis in animals and humans: report of a workshop. Zeitschrift für Parasitenkunde 67, 526.CrossRefGoogle ScholarPubMed
Scriver, C. R. & Wilson, O. H. (1967). Amino acid transport: evidence for genetic control of two types in human kidney. Science 155, 1428–30.CrossRefGoogle ScholarPubMed
Smyth, J. D. & Barrett, N. J. (1980). Procedures for testing the viability of human hydatid cysts following surgical removal, especially after chemotherapy. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 649–52.CrossRefGoogle ScholarPubMed
Smyth, J. D. & Davies, Z. (1974). In vitro culture of the strobilar stage of Echinococcus granulosus (sheep strain): a review of basic problems and results. International Journal for Parasitology 4, 631–44.CrossRefGoogle Scholar