Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T01:15:35.408Z Has data issue: false hasContentIssue false

Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris

Published online by Cambridge University Press:  06 April 2009

G. Mayrhofer
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, North Terrace, Adelaide, ASouth Australia 5005, Australia
R. H. Andrews
Affiliation:
Department of Microbiology and Immunology, The University of Adelaide, North Terrace, Adelaide, ASouth Australia 5005, Australia
P. L. Ey
Affiliation:
The University of Melbourne, Veterinary Clinical Centre, Werribee, AVictoria 3030, Australia
N. B. Chilton
Affiliation:
The University of Melbourne, Veterinary Clinical Centre, Werribee, AVictoria 3030, Australia

Summary

Giardia that infect humans are known to be heterogeneous but they are assigned currently to a single species, Giardia intestinalis (syn. G. lamblia). The genetic differences that exist within G. intestinalis have not yet been assessed quantitatively and neither have they been compared in magnitude with those that exist between G. intestinalis and species that are morphologically similar (G. duodenalis) or morphologically distinct (e.g. G. muris). In this study, 60 Australian isolates of G. intestinalis were analysed electrophoretically at 27 enzyme loci and compared with G. muris and a feline isolate of G. duodenalis. Isolates of G. intestinalis were distinct genetically from both G. muris (approximately 80% fixed allelic differences) and the feline G. duodenalis isolate (approximately 75% fixed allelic differences). The G. intestinalis isolates were extremely heterogeneous but they fell into 2 major genetic assemblages, separated by fixed allelic differences at approximately 60% of loci examined. The magnitude of the genetic differences between the G. intestinalis assemblages approached the level that distinguished the G. duodenalis isolate from the morphologically distinct G. muris. This raises important questions about the evolutionary relationships of the assemblages with Homo sapiens, the possibility of ancient or contemporary transmission from animal hosts to humans and the biogeographical origins of the two clusters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, M., Andrews, R. H., Robinson, B., Christy, P., Baverstock, P. R., Dobson, P. J. & Blackler, S. J. (1989). A genetic approach to species criteria in the amoeba genus Naegleria using allozyme electrophoresis. International Journal for Parasitology 19, 823–34.CrossRefGoogle ScholarPubMed
Andrews, R. H., Adams, M., Boreham, P. F. L., Mayrhofer, G. & Meloni, B. P. (1989). Giardlo intestinalis: Electrophoretic evidence for a species complex. International Journal for Parasitology 19, 183–90.CrossRefGoogle ScholarPubMed
Andrews, R. H., Chilton, N. B., Ey, P. L. & Mayrhofer, G. (1993). Additional enzymes for the genetic characterization of Giardia from different host species. Parasitology Research 79, 337–9.CrossRefGoogle ScholarPubMed
Andrews, R. H., Chilton, N. B. & Mayrhofer, G. (1992). Selection of specific genotypes of Giardia intestinalis by growth in vitro and in vivo. Parasitology 105, 375–86.CrossRefGoogle ScholarPubMed
Andrews, R. H., Handman, E., Adams, M., Baverstock, P. R. & Mitchell, G. F. (1988). Genetic characterization of Leishmania isolates at 37 enzyme loci. International Journal for Parasitology 18, 445–52.CrossRefGoogle ScholarPubMed
Baveja, U. K., Jyoti, A. S., Kaur, M., Agarwal, D. S., Anand, B. S. & Nanda, R. (1986). Isoenzyme studies of Giardia lambda isolated from symptomatic cases. Australian Journal of Experimental Biology and Medical Science 64, 119–26.CrossRefGoogle Scholar
Baverstock, P. R., Watts, C. H. S., Adams, M. & Cole, S. R. (1981). Genetical relationships among Australian rodents (Muridae). Australian Journal of Zoology 29, 289303.CrossRefGoogle Scholar
Baverstock, P. R., Archer, M., Adams, M. & Richardson, B. J. (1982). Genetic relationships among 32 species of Australian dasyurid marsupials. In Carnivorous Marsupials (ed. Archer, M.), pp. 641650. Sydney: Royal Zoological Society of New South Wales.Google Scholar
Bertram, M. E., Meyer, E. A., Lile, J. D. & Morse, S. A. (1983). A comparison of isoenzymes of five axenic Giardia isolates. Journal of Parasitology 69, 793801.CrossRefGoogle ScholarPubMed
Ey, P. L., Khanna, K., Andrews, R. H., Manning, P. A. & Mayrhofer, G. (1992). Distinct genetic groups of Giardia intestinalis distinguished by restriction fragment length polymorphisms. Journal of General Microbiology 138, 2629–37.CrossRefGoogle ScholarPubMed
Ey, P. L., Andrews, R. H. & Mayrhofer, G. (1993 a). Differentiation of major genotypes of Giardia intestinalis by polymerase chain reaction analysis of a gene encoding a trophozoite surface antigen. Parasitology 106, 347–56.CrossRefGoogle ScholarPubMed
Ey, P. L., Darby, J. M., Andrews, R. H. & Mayrhofer, G. (1993 b). Giardia intestinalis: detection of major genotypes by restriction analysis of gene amplification products. International Journal for Parasitology 23, 591600.CrossRefGoogle ScholarPubMed
Filice, F. P. (1952). Studies on the cytology and life history of Giardia from the laboratory rat. University of California Publications in Zoology 57, 53146.Google Scholar
Gillon, J. (1984). Giardiasis: Review of epidemiology, pathogenic mechanisms and host responses. Quarterly Journal of Medicine 53, 2939.Google Scholar
Homan, W. L., Van enckevort, F. H. J., Limper, L., Van eys, G. J. J. M., Schoone, G. J., Kasprzak, W., Majewska, A. C. & Van knapen, F. (1992). Comparison of Giardia isolates from different laboratories by isoenzyme analysis and recombinant DNA probes. Parasitology Research 78, 316–23.CrossRefGoogle ScholarPubMed
Mayrhofer, G., Andrews, R. H., Ey, P. L., Albert, M. J., Grimmond, T. R. & Merry, D. J. (1992). The Use of suckling mice to isolate and grow Giardia from mammalian faecal specimens for genetic analysis. Parasitology 105, 255–63.Google Scholar
Meloni, B. P., Lymbery, A. J. & Thompson, R. C. A. (1988). Isoenzyme electrophoresis of 30 isolates of Giardia from humans and felines. American Journal of Tropical Medicine and Hygiene 38, 6573.CrossRefGoogle ScholarPubMed
Nash, T. E. (1992). Surface antigen variability and variation in Giardia lamblia. Parasitology Today 8, 229–34.CrossRefGoogle ScholarPubMed
Nash, T. E. & Keister, D. (1985). Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. Journal of Infectious Diseases 152, 1166–71.Google Scholar
Nash, T. E., McCutchan, T., Keister, D., Dame, J. D., Conrad, J. D. & Gillin, F. D. (1985). Restriction-endonuclease analysis of DNA from 15 Giardia isolates obtained from humans and animals. Journal of Infectious Diseases 152, 6473.CrossRefGoogle ScholarPubMed
Nash, T. E., Herrington, D. A., Losonsky, G. A. & Levine, M. M. (1987). Experimental human infections with Giardia lamblia. Journal of Infectious Diseases 156, 974–83.CrossRefGoogle ScholarPubMed
Richardson, B. J., Baverstock, P. R. & Adams, M. (1986). Allozyme Electrophoresis: A Handbook for Animal Systematics and Population Studies. Sydney: Academic Press.Google Scholar
Roberts-Thomson, I. C., Stevens, D. P., Mahmoud, A. A. F. & Warren, K. S. (1976). Giardiasis in the mouse: an animal model. Gastroenterology 71, 5761.CrossRefGoogle ScholarPubMed
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman & Co.Google Scholar
Thompson, R. C. A., Lymbery, A. J. & Meloni, B. P. (1990). Genetic variation in Giardia Kunstler, 1882: taxonomic and epidemiological significance. Protozoological Abstracts 14, 128.Google Scholar