Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T01:59:43.003Z Has data issue: false hasContentIssue false

The diversity and evolution of nematodes (Pharyngodonidae) infecting New Zealand lizards

Published online by Cambridge University Press:  15 December 2016

SARAH MOCKETT
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
TRENT BELL
Affiliation:
EcoGecko Consultants Limited, 46 Sunrise Boulevard, Tawa, Wellington 5028, New Zealand
ROBERT POULIN*
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
FÁTIMA JORGE
Affiliation:
Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal
*
*Corresponding author: Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand. E-mail: [email protected]

Summary

Host–parasite co-evolutionary studies can shed light on diversity and the processes that shape it. Molecular methods have proven to be an indispensable tool in this task, often uncovering unseen diversity. This study used two nuclear markers (18S rRNA and 28S rRNA) and one mitochondrial (cytochrome oxidase subunit I) marker to investigate the diversity of nematodes of the family Pharyngodonidae parasitizing New Zealand (NZ) lizards (lygosomine skinks and diplodactylid geckos) and to explore their co-evolutionary history. A Bayesian approach was used to infer phylogenetic relationships of the parasitic nematodes. Analyses revealed that nematodes parasitizing skinks, currently classified as Skrjabinodon, are more closely related to Spauligodon than to Skrjabinodon infecting NZ geckos. Genetic analyses also uncovered previously undetected diversity within NZ gecko nematodes and provided evidence for several provisionally cryptic species. We also examined the level of host–parasite phylogenetic congruence using a global-fit approach. Significant congruence was detected between gecko-Skrjabinodon phylogenies, but our results indicated that strict co-speciation is not the main co-evolutionary process shaping the associations between NZ skinks and geckos and their parasitic nematodes. However, further sampling is required to fully resolve co-phylogenetic patterns of diversification in this host–parasite system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ainsworth, R. (1985). An evaluation of some island biogeographic theories using lizards and lizard parasites in the wellington region. Masters of Science, Victoria University, Wellington.Google Scholar
Ainsworth, R. (1990). Male dimorphism in two new species of nematode (Pharyngodonidae: Oxyurida) from New Zealand lizards. The Journal of Parasitology 76, 812822.CrossRefGoogle Scholar
Ainsworth, R. (1992). A revision of the Pharyngodoninae, nematodes of frogs and lizards . Doctor of Philosophy, Victoria University, Wellington.Google Scholar
Anderson, R. C. (2000). Nematode Parasites of Vertebrates: Their Development and Transmission , 2nd Edn. CABI Publishing, Wallingford.CrossRefGoogle Scholar
Araujo, S. B. L., Braga, M. P., Brooks, D. R., Agosta, S. J., Hoberg, E. P., von Hartenthal, F. W. and Boeger, W. A. (2015). Understanding host-switching by ecological fitting. PLoS ONE 10, e0139552.CrossRefGoogle ScholarPubMed
Balbuena, J. A., Míguez-Lozano, R. and Blasco-Costa, I. (2013). PACo: a novel procrustes application to cophylogenetic analysis. PLoS ONE 8, e61048.CrossRefGoogle Scholar
Ballard, J. W. O. and Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology 13, 729744.CrossRefGoogle ScholarPubMed
Barwick, R. E. (1959). The life history of the common New Zealand skink Leiolopisma zelandica (Gray, 1843). Transactions of the Royal Society of New Zealand 86, 331380.Google Scholar
Bell, T. (2014). Standardized common names for New Zealand reptiles. BioGecko 2, 811.Google Scholar
Blouin, M. S., Yowell, C. A., Courtney, C. H. and Dame, J. B. (1998). Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Molecular Biology and Evolution 15, 17191727.CrossRefGoogle ScholarPubMed
Brooks, D. R. (1979). Testing the context and extent of host–parasite coevolution. Systematic Zoology 28, 299307.CrossRefGoogle Scholar
Brooks, D. R. (1991). Phylogeny, Ecology, and Behavior: A Research Program in Comparative Biology. The University of Chicago Press, Chicago.Google Scholar
Chapple, D. G., Ritchie, P. A. and Daugherty, C. H. (2009). Origin, diversification, and systematics of the New Zealand skink fauna (Reptilia: Scincidae). Molecular Phylogenetics and Evolution 52, 470487.CrossRefGoogle ScholarPubMed
Clark, W. C. (1982). Parasites of New Zealand reptiles. In New Zealand Herpetology: Proceedings of a Symposium Held at the Victoria University of Wellington, No. 2 (ed. Alison, F. R.). New Zealand Wildlife Service, Department of Internal Affairs, Wellington, NZ.Google Scholar
Collins, R. A. and Cruickshank, R. H. (2013). The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13, 969975.CrossRefGoogle ScholarPubMed
Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Dasmahapatra, K. K., Elias, M., Hill, R. I., Hoffman, J. I. and Mallet, J. (2010). Mitochondrial DNA barcoding detects some species that are real, and some that are not. Molecular Ecology Resources 10, 264273.CrossRefGoogle ScholarPubMed
de Gruijter, J. M., Polderman, A. M., Zhu, X. Q. and Gasser, R. B. (2002). Screening for haplotypic variability within Oesophagostomum bifurcum (Nematoda) employing a single-strand conformation polymorphism approach. Molecular and Cellular Probes 16, 185190.CrossRefGoogle ScholarPubMed
de Vienne, D. M., Refregier, G., Lopez-Villavicencio, M., Tellier, A., Hood, M. E. and Giraud, T. (2013). Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytologist 198, 347385.CrossRefGoogle ScholarPubMed
Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J., Vincx, M. and Moens, T. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina . Marine Ecology Progress Series 300, 91103.CrossRefGoogle Scholar
Falk, B. J. and Perkins, S. L. (2013). Host specificity shapes population structure of pinworm parasites in Caribbean reptiles. Molecular Ecology 22, 45764590.CrossRefGoogle ScholarPubMed
Fenner, A. L., Godfrey, S. S. and Bull, C. M. (2011). Using social networks to deduce whether residents or dispersers spread parasites in a lizard population. The Journal of Animal Ecology 80, 835843.CrossRefGoogle ScholarPubMed
Floyd, R. M., Rogers, A. D., Lambshead, P. J. D. and Smith, C. R. (2005). Nematode-specific PCR primers for the 18S small subunit rRNA gene. Molecular Ecology Notes 5, 611612.CrossRefGoogle Scholar
Foitová, I., Koubková, B., Baruš, V. and Nurcahyo, W. (2008). Presence and species identification of the gapeworm Mammomonogamus laryngeus (Railliet, 1899) (Syngamidae: Nematoda) in a semi-wild population of Sumatran orangutan (Pongo abelii) in Indonesia. Research in Veterinary Science 84, 232236.CrossRefGoogle Scholar
Frézal, L. and Leblois, R. (2008). Four years of DNA barcoding: current advances and prospects. Infection, Genetics and Evolution 8, 727736.CrossRefGoogle ScholarPubMed
Fujita, M. K., Leaché, A. D., Burbrink, F. T., Mcguire, J. A. and Moritz, C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution 27, 480488.CrossRefGoogle Scholar
Gill, B. J., Bejakovtch, D. and Whitaker, A. H. (2001). Records of foreign reptiles and amphibians accidentally imported to New Zealand. New Zealand Journal of Zoology 28, 351359.CrossRefGoogle Scholar
Grillo, V., Jackson, F., Cabaret, J. and Gilleard, J. S. (2007). Population genetic analysis of the ovine parasitic nematode Teladorsagia circumcincta and evidence for a cryptic species. International Journal for Parasitology 37, 435447.CrossRefGoogle ScholarPubMed
Gyawali, P., Khanal, S. and Shrestha, B. (2013). Intestinal helminth fauna in sleepy lizard (Tiliqua rugosa) in Australia. International Journal of Veterinary Science 2, 1720.Google Scholar
Hickson, R. E., Slack, K. E. and Lockhart, P. (2000). Phylogeny recapitulates geography, or why New Zealand has so many species of skinks. Biological Journal of the Linnean Society 70, 415433.CrossRefGoogle Scholar
Hoberg, E. P. and Brooks, D. R. (2008). A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host–parasite systems. Journal of Biogeography 35, 15331550.CrossRefGoogle Scholar
Hoberg, E. P. and Brooks, D. R. (2015). Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions of the Royal Society of London B Biological Sciences 370, 20130553.CrossRefGoogle ScholarPubMed
Hodda, M. (2011). Phylum Nematoda Cobb 1932. In Zhang Z. -Q. (Ed.) Animal biodiversity: an outer of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 6395.CrossRefGoogle Scholar
Hu, M., Chilton, N. B., Zhu, X. and Gasser, R. B. (2002). Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis 23, 2734.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Jackson, J. A. (1999). Analysis of parasite host-switching: limitations on the use of phylogenies. Parasitology 119, S111S123.CrossRefGoogle ScholarPubMed
Jewell, T. (2006). Identifying Geckos in Otago. Science & Technical Publication, Department of Conservation, Wellington, NZ.Google Scholar
Jones, H. I. (2013). Gastrointestinal nematodes from three species of Australian leaf-tailed geckos (Reptilia: Saltuarius spp.), with descriptions of new species of Skrjabinodon (Oxyuroidea: Pharyngodonidae) and Hedruris (Habronematoidea: Hedruridae). Comparative Parasitology 80, 4759.CrossRefGoogle Scholar
Jorge, F., Carretero, M., Roca, V., Poulin, R. and Perera, A. (2013 a). What you get is what they have? Detectability of intestinal parasites in reptiles using faeces. Parasitology Research 112, 40014007.CrossRefGoogle ScholarPubMed
Jorge, F., Perera, A., Carretero, M. A., James Harris, D. and Roca, V. (2013 b). Cryptic species unveiled: the case of the nematode Spauligodon atlanticus . Journal of Zoological Systematics and Evolutionary Research 51, 187202.CrossRefGoogle Scholar
Jorge, F., Roca, V., Perera, A., Harris, D. and Carretero, M. (2011). A phylogenetic assessment of the colonisation patterns in Spauligodon atlanticus Astasio-Arbiza et al. 1987 (Nematoda: Oxyurida: Pharyngodonidae), a parasite of lizards of the genus Gallotia Boulenger: no simple answers. Systematic Parasitology 80, 5366.CrossRefGoogle ScholarPubMed
Jorge, F., Perera, A., Roca, V., Carretero, M. A., Harris, D. J. and Poulin, R. (2014). Evolution of alternative male morphotypes in oxyurid nematodes: a case of convergence? Journal of Evolutionary Biology 27, 16311643.CrossRefGoogle ScholarPubMed
Karpiej, K., Dzido, J., Rokicki, J. and Kijewska, A. (2013). Anisakid nematodes of Greenland halibut reinhardtius hippoglossoides from the Barents Sea. The Journal of Parasitology 99, 650654.CrossRefGoogle ScholarPubMed
Katoh, K., Misawa, K., Kuma, K.-I. and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 30593066.CrossRefGoogle ScholarPubMed
Klassen, G. J. (1992). Coevolution: a history of the macroevolutionary approach to studying host–parasite associations. The Journal of Parasitology 78, 573587.CrossRefGoogle ScholarPubMed
Lanfear, R., Calcott, B., Ho, S. Y. and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 16951701.CrossRefGoogle ScholarPubMed
Nielsen, S. V., Bauer, A. M., Jackman, T. R., Hitchmough, R. A. and Daugherty, C. H. (2011). New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Molecular Phylogenetics and Evolution 59, 122.CrossRefGoogle Scholar
Paterson, A. M. and Banks, J. (2001). Analytical approaches to measuring cospeciation of host and parasites: through a glass, darkly. International Journal for Parasitology 31, 10121022.CrossRefGoogle ScholarPubMed
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. (2012). MrBayes 3·2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Streicher, J. W., Schulte, J. A. I. and Wiens, J. J. (2016). How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Systematic Biology 65, 128145.CrossRefGoogle ScholarPubMed
Szöllosi, G. J., Tannier, E., Daubin, V. and Boussau, B. (2013). The inference of gene trees with species trees. Systematic Biology 64, 4262.CrossRefGoogle Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Tan, N., Chilton, N. B., Huby-Chilton, F., Jex, A. R., Gasser, R. B. and Beveridge, I. (2012). Molecular evidence for a cryptic species within the parasitic nematode Macroponema comani (Strongyloidea: Cloacininae). Molecular and Cellular Probes 26, 170174.CrossRefGoogle ScholarPubMed
Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31, 93104.CrossRefGoogle Scholar
Supplementary material: PDF

Mockett supplementary material

Table S1 and Figures S1-S2

Download Mockett supplementary material(PDF)
PDF 20.9 MB