Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:48:32.500Z Has data issue: false hasContentIssue false

Disarray of sarcomeric alpha-actinin in cardiomyocytes infected by Trypanosoma cruzi

Published online by Cambridge University Press:  02 May 2006

T. G. MELO
Affiliation:
Laboratório de Ultra-estrutura Celular, Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
D. S. ALMEIDA
Affiliation:
Laboratório de Ultra-estrutura Celular, Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
M. N. S. L. MEIRELLES
Affiliation:
Laboratório de Ultra-estrutura Celular, Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
M. C. S. PEREIRA
Affiliation:
Laboratório de Ultra-estrutura Celular, Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil

Abstract

Infection with Trypanosoma cruzi causes acute myocarditis and chronic cardiomyopathy. Remarkable changes have been demonstrated in the structure and physiology of cardiomyocytes during infection by this parasite that may contribute to the cardiac dysfunction observed in Chagas' disease. We have investigated the expression of α-actinin, an actin-binding protein that plays a key role in the formation and maintenance of Z-lines, during the T. cruzi-cardiomyocyte interaction in vitro. Immunolocalization of α-actinin in control cardiomyocytes demonstrated a typical periodicity in the Z line of cardiac myofibrils, as well as its distribution at focal adhesion sites and along the cell–cell junctions. No significant changes were observed in the localization of α-actinin after 24 h of infection. In contrast, depletion of sarcomeric distribution of α-actinin occurred after 72 h in T. cruzi-infected cardiomyocytes, while no change occurred at focal adhesion contacts. Biochemical assays demonstrated a reduction of 46% and 32% in the expression of α-actinin after 24 h and 72 h of infection, respectively. Intracellular parasites were also stained with an anti-α-actinin antibody that recognized a protein of 78 kDa by Western blot. Taken together, our data demonstrate a degeneration of the myofibrils in cardiomyocytes induced by T. cruzi infection, rather than a disassembly of the I bands within sarcomeres.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, Z. A., Andrade, S. G., Oliveira, G. B. and Alonso, D. R. ( 1978). Histopathology of the conducting tissue of the heart in Chagas' myocarditis. American Heart Journal 95, 316324.CrossRefGoogle Scholar
Babbitt, C. J., Shai, S. Y., Harpf, A. E., Pham, C. G. and Ross, R. S. ( 2002). Modulation of integrins and integrin signaling molecules in the pressure-loaded murine ventricle. Histochemistry and Cell Biology 118, 431439.Google Scholar
Barstead, R. J., Kleiman, L. and Waterston, R. H. ( 1991). Cloning, sequencing, and mapping of an alpha-actinin gene from the nematode Caenorhabditis elegans. Cell Motility and Cytoskeleton 20, 6978.CrossRefGoogle Scholar
Beggs, A. H., Byers, T. J., Knoll, J. H. M., Boyce, F. M., Bruns, G. A. P. and Kunkel, L. M. ( 1992). Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. The Journal of Biological Chemistry 267, 92819288.Google Scholar
Bradford, M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248254.CrossRefGoogle Scholar
Brakebusch, C. and Fassler, R. ( 2003). The integrin-actin connection, an eternal love affair. EMBO Journal 22, 23242333.CrossRefGoogle Scholar
Buck, C. A. and Horwitz, A. F. ( 1987). Cell surface receptors for the extracellular matrix. Annual Review of Cell Biology 3, 179205.CrossRefGoogle Scholar
Campos de Carvalho, A. C., Tanowitz, H. B., Wittner, M., Dermietzel, R., Roy, C., Hertzberg, E. L. and Spray, D. C. ( 1992). Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circulation Research 70, 733742.CrossRefGoogle Scholar
Colmanetti, F. H., Teixeira, V.De, P., Rodrigues, M. L., Chica, J. E., Reis, M. G. and Dos Santos, V. M. ( 2005). Myocardiocyte ultrastructure and morphometrical analysis in hamsters experimentally infected with Trypanosoma cruzi. Ultrastructural Pathology 29, 139147.CrossRefGoogle Scholar
Coura, R. J. and De Castro, S. L. ( 2002). A critical review on Chagas disease chemotherapy. Memórias do Instituto Oswaldo Cruz 97, 324.CrossRefGoogle Scholar
Critchley, D. R., Holt, M. R., Barry, S. T., Priddle, H., Hemmings, L. and Norman, J. ( 1999). Integrin-mediated cell adhesion: the cytoskeletal connection. Biochemical Society Symposium 65, 7999.Google Scholar
Do Campo, R. ( 2001). Recent developments in the chemotherapy of Chagas disease. Current Pharmaceutical Design 7, 11571164.CrossRefGoogle Scholar
Dubreuil, R. R. ( 1991). Structure and evolution of the actin crosslinking proteins. Bioessays 13, 219226.CrossRefGoogle Scholar
Elizari, M. V. ( 1999). La miocardiopatia chagasica. perspectiva hiistórica. Medicina (Buenos Aires) 59, 2540.Google Scholar
Elizari, M. V. ( 2002). Arrhythmias associated with Chagas' heart disease. Cardiac Electrophysiology Review 6, 115119.CrossRefGoogle Scholar
Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., Gullberg, D., Hescheler, J., Addicks, K. and Wobus, A. M. ( 1996). Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. Journal of Cell Science 109, 29892999.Google Scholar
Fyrberg, E., Kelly, M., Ball, E., Fyrberg, C. and Reedy, M. C. ( 1990). Molecular genetics of Drosophila alpha-actinin: mutant alleles disrupt Z disc integrity and muscle insertions. Journal of Cell Biology 110, 19992011.CrossRefGoogle Scholar
Garg, N., Popov, V. L. and Papaconstantinou, J. ( 2003). Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochimica et Biophysica Acta 1638, 106120.CrossRefGoogle Scholar
Garzoni, L. R., Masuda, M. O., Capella, M. M., Lopes, A. G. and De Meirelles, M. N. ( 2003). Characterization of [Ca2+]i responses in primary cultures of mouse cardiomyocytes induced by Trypanosoma cruzi trypomastigotes. Memórias do Instituto Oswaldo Cruz 98, 487493.CrossRefGoogle Scholar
Greene, D. K., Tumova, S., Couchman, J. R. and Woods, A. ( 2003). Syndecan-4 associates with alpha-actinin. The Journal of Biological Chemistry 278, 76177623.CrossRefGoogle Scholar
Greenwell-Wild, T., Vazquez, N., Sim, D., Schito, M., Chatterjee, D., Orenstein, J. M. and Wahl, S. M. ( 2002). Mycobacterium avium infection and modulation of human macrophage gene expression. Journal of Immunology 169, 62866297.CrossRefGoogle Scholar
Harada, K. and Morimoto, S. ( 2004). Inherited cardiomyopathies as a troponin disease. Japanese Journal of Physiology 54, 307318.CrossRefGoogle Scholar
Hein, S., Scholz, D., Fujitani, N., Rennollet, H., Brand, T., Friedl, A. and Schaper, J. ( 1994). Altered expression of titin and contractile proteins in failing human myocardium. Journal of Molecular and Cellular Cardiology 26, 12911306.CrossRefGoogle Scholar
Higuchi, M. L., Benvenute, L. A., Reis, M. M. and Metzger, M. ( 2003). Pathophysiology of the heart in Chagas' disease: current status and new development. Cardiovascular Research 60, 96107.CrossRefGoogle Scholar
Kamisago, M., Sharma, S. D., DePalma, S. R., Solomon, S., Sharma, P., McDonough, B., Smoot, L., Mullen, M. P., Woolf, P. K., Wigle, E. D., Seidman, J. G. and Seidman, C. E. ( 2000). Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. New England Journal of Medicine 343, 16881696.CrossRefGoogle Scholar
Kelly, D. F. and Taylor, K. A. ( 2005). Identification of the beta1-integrin binding site on alpha-actinin by cryoelectron microscopy. Journal of Structural Biology 149, 290302.CrossRefGoogle Scholar
Knudsen, K. A., Soler, A. P., Johnson, K. R. and Wheelock, M. J. ( 1995). Interaction of alpha-actinin with the cadherin/catenin cell–cell adhesion complex via alpha-catenin. Journal of Cell Biology 130, 6777.CrossRefGoogle Scholar
Lin, T. H., Aplin, A. E., Shen, Y., Chen, Q., Schaller, M., Romer, L., Aukhil, I. and Juliano, R. L. ( 1997). Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. Journal of Cell Biology 136, 13851395.CrossRefGoogle Scholar
Meirelles, M. N. L., Araújo-Jorge, T. C., Miranda, C. F., De Souza, W. and Barbosa, H. S. ( 1986). Interaction of Trypanosoma cruzi with heart muscle cells: Ultrastructure and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro. European Journal of Cell Biology 41, 198206.Google Scholar
Meirelles, M. N. L., Souto-Padron, T. and De Souza, W. ( 1984). Participation of cell surface anionic sites in the interaction between Trypanosoma cruzi and macrophage. Journal of Submicroscopic Cytology 16, 533545.Google Scholar
Melo, T. G., Almeida, D. S., Meirelles, M. N. S. L. and Pereira, M. C. S. ( 2004). Trypanosoma cruzi infection disrupts vinculin costameres in cardiomyocytes. European Journal of Cell Biology 83, 531540.CrossRefGoogle Scholar
Mills, M., Yang, N., Weinberger, R., Vander Woude, D. L., Beggs, A. H., Easteal, S. and North, K. ( 2001). Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Human Molecular Genetics 10, 13351346.CrossRefGoogle Scholar
Moore-Lai, D. and Rowland, E. ( 2004). Microarray data demonstrate that Trypanosoma cruzi downregulates the expression of apoptotic genes in BALB/c fibroblasts. Journal of Parasitology 90, 893895.CrossRefGoogle Scholar
Mukherjee, S., Belbin, T. J., Spray, D. C., Iacobas, D. A., Weiss, L. M., Kitsis, R. N., Wittner, M., Jelicks, L. A., Scherer, P. E., Ding, A. and Tanowitz, H. B. ( 2003). Microarray analysis of changes in gene expression in a murine model of chronic chagasic cardiomyopathy. Parasitology Research 91, 187196.CrossRefGoogle Scholar
Muraishi, A., Kai, H., Adachi, K., Nishi, H. and Imaizumi, T. ( 1999). Malalignment of the sarcomeric filaments in hypertrophic cardiomyopathy with cardiac myosin heavy chain gene mutation. Heart 82, 625629.CrossRefGoogle Scholar
Olson, T. M., Illenberger, S., Kishimoto, N., Huttelmaier, S., Keating, M. T. and Jockusch, B. M. ( 2001 a). Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 29, 431437.Google Scholar
Olson, T. M., Kishimoto, N. Y., Whitby, F. G. and Michels, V. V. ( 2001 b). Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology 33, 723732.Google Scholar
Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y. S. and Keating, M. T. ( 1998). Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750752.CrossRefGoogle Scholar
Otey, C. A., Pavalko, F. M. and Burridge, K. ( 1990). An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. Journal of Cell Biology 111, 721729.CrossRefGoogle Scholar
Pavalko, F. M., Otey, C. A., Simon, K. O. and Burridge, K. ( 1991). Alpha-actinin: a direct link between actin and integrins. Biochemical Society Transactions 19, 10651069.CrossRefGoogle Scholar
Pereira, M. C. S., Costa, M., Chagas Filho, C. and Meirelles, M. N. L. ( 1993). Myofibrillar breakdown and cytoskeletal alterations in heart muscle cells during invasion by Trypanosoma cruzi: Immunological and ultrastructural study. Journal of Submicrosopy Cytology and Pathology 25, 559569.Google Scholar
Pereira, M. C. S., Silva, D. T., Barbosa, H. S., Meirelles, M. N. L., Alves, J., Wen, L. M., Mallonee, D., Osak, I. L. S., Buck, G. A., Probst, C. M., Goldenberg, S. and Krieger, M. A. ( 2002): Microarray analysis shows that different murine genes are expressed upon infection of cardiomyocites with cell culture or with metacyclic trypomastigotes of Trypanosoma cruzi. XXIX Reunião Anual de Pesquisa Básica em Doença de Chagas. Revista do Instituto de Medicina Tropical de São Paulo 44, (Suppl. 12), p. 38.Google Scholar
Pereira, M. C. S., Singer, R. H. and Meirelles, M. N. S. ( 2000). Trypanosoma cruzi infection affects mRNA regulation in heart muscle cells. Journal of Eukaryotic Microbiology 47, 271279.CrossRefGoogle Scholar
Probst, C. M., Poersch, C. O., Pavoni, D. P., Ávila, A. R., Goes, V. M., Barbosa, H. S., Meirelles, M. N. L., Pereira, M. C. S., Puiu, D., Mallonee, D., Alves, J., Ozaki, L. S., Wen, L., Carvalho, M. R., Serrano, M. G., Manque, P. A., Xu, P., Zwierzynski, T. A., Freeman, B., Buck, G. A., Goldenberg, S. and Krieger, M. A. ( 2003). Gene expression profile of cardiomyocites infected with different forms of T. cruzi trypomastigotes. XXX Reunião Anual de Pesquisa Básica em Doença de Chagas. Revista do Instituto de Medicina Tropical de São Paulo 45, (Suppl. 13), p. 171.Google Scholar
Rajfur, Z., Roy, P., Otey, C., Romer, L. and Jacobson, K. ( 2002). Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biology 4, 286293.CrossRefGoogle Scholar
Rodriguez, J. B. ( 2001). Specific molecular targets to control tropical diseases. Current Pharmaceutical Design 7, 11051116.CrossRefGoogle Scholar
Shah, S. B. and Lieber, R. L. ( 2003). Simultaneous imaging and functional assessment of cytoskeletal protein connections in passively loaded single muscle cells. Journal of Histochemistry and Cytochemistry 51, 1929.CrossRefGoogle Scholar
Sartori, M. J., Pons, P., Mezzano, L., Lin, S. and De Fabro, S. P. ( 2003). Trypanosoma cruzi infection induces microfilament depletion in human placenta syncytiotrophoblast. Placenta 24, 767771.CrossRefGoogle Scholar
Sexton, A. C., Good, R. T., Hansen, D. S., D'Ombrain, M. C., Buckingham, L., Simpson, K. and Schofield, L. ( 2004). Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. Journal of Infectious Diseases 189, 12451256.CrossRefGoogle Scholar
Taniwaki, N. M., Andreoli, W. K., Calabrese, K. S., Da Silva, S. and Mortara, R. A. ( 2005). Disruption of myofibrillar proteins in cardiac muscle of Calomys callosus chronically infected with Trypanosoma cruzi and treated with immunosuppressive agent. Parasitology Research 97, 323331.CrossRefGoogle Scholar
Urbina, J. A. ( 1999). Chemotherapy of Chagas' disease: the how and the why. Jounal of Molecular Medicine 3, 332338.CrossRefGoogle Scholar
Virel, A. and Backman, L. ( 2004). Molecular evolution and structure of {alpha}-actinin. Molecular Biology and Evolution 21, 10241031.CrossRefGoogle Scholar
Volberg, T., Geiger, B., Kam, Z., Pankov, R., Simcha, I., Sabanay, H., Coll, J. L., Adamson, E. and Ben-Ze'ev, A. ( 1995). Focal adhesion formation by F9 embryonal carcinoma cells after vinculin gene disruption. Journal of Cell Science 108, 22532260.Google Scholar
Wang, J., Shaner, N., Mittal, B., Zhou, Q., Chen, J., Sanger, J. M. and Sanger, J. W. ( 2005). Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motility and the Cytoskeleton 61, 3448.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION ( 2000). Chagas' disease. Weekly Epidemiology Record 2, 112.
Wu, J. C., Wang, S. M. and Tseng, Y. Z. ( 1996). The involvement of PKC in N-cadherin-mediated adherens junction assembly in cultured cardiomyocytes. Biochemical and Biophysical Research Communications 225, 733739.CrossRefGoogle Scholar
Yowe, D., Cook, W. J. and Gutierrez-Ramos, J. C. ( 2001). Microarrays for studying the host transcriptional response to microbial infection and for the identification of host drug targets. Microbes and Infection 3, 813821.CrossRefGoogle Scholar